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Abstract

The general purpose of a dynamic factor model (DFM) is to summarize
a large number of time series into a few common factors. Here we explore
a number of DFM specifications applied to 80 granular, non-overlapping in-
dexes of commercial property prices in the US, quarterly from 2001 to 2017.
We examine the nature and the structure of the factors and the index fore-
casts that can be produced using the DFMs. We consider specifications of 1,
2, 3 and 4 common factor trends. As a major motivation for the use of DFMs
is their ability to improve out-of-sample forecasting of systems of numerous
related series, we apply the DFM estimated factor returns in an Autoregres-
sive Distributed Lag (ARDL) model to forecast the individual real estate
price series. We compare the forecasted residuals to a conventional Autore-
gressive (AR) forecast model as a “benchmark” for two markets: Boston
apartments and Dallas commercial. The results show that the ARDL model
predicts the crisis and subsequent recovery really well, whereas the “bench-
mark” model typically follows the previous price trend. We find that the
DFM forecasts are most precise with only one or two factors. The two promi-
nent factors may reflect general economic conditions and the rental housing
market, respectively.
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1. Introduction

In recent years, an explosion in the amount of economic and financial
data has prompted econometricians to develop or adapt new methods to effi-
ciently summarize the information in large databases with many time series.
Among these methods, dynamic factor models (DFMs), have seen rapid
growth and become very popular among macro-economists. These models
summarize a large number of related time series into a small number of fac-
tors common to the original series. In a DFM we describe temporal variation
in a set of N observed variables that are related or reflect a common system
(like GDP, interest rates, employment and such macro-economic variables, or
in our case asset price indexes of numerous separate commercial real estate
space markets) using linear combinations of M << N “hidden” common
factors which are identified and estimated from the data. As a result we can
summarize big quantities of N time series, into a small number of M common
factors. Because we may then be better able to forecast a small number of
common factors than the large number of original series separately, DFMs
may be able to improve forecasting of the series.

Dynamic factor analysis is already widely used in practice. A famous
example is the Chicago FRB National Activity Indicator. It is based on
85 monthly series describing the US economy, covering production, income,
employment, personal consumption, housing, sales, inventories and orders.
Applications of DFMs abound in the empirical economic literature as well.
A few examples include asset pricing models (Ross, 1976), consumer the-
ory (Gorman, 1981; Lewbel, 1991), the assessment of performance and risk
measurement in finance (Campbell et al., 1997), and policy related questions
(Bernanke et al., 2005; Stock and Watson, 2005; Favero et al., 2005; Del Ne-
gro and Otrok, 2007). Factor models have also been applied to commercial
real estate in an investment context (see Naranjo and Ling, 1997), though
the new breed of dynamic factor models has not yet to our knowledge been
applied to commercial property price forecasting.

The advent of high quality granular indexes of commercial property asset
transaction prices makes the time ripe to explore the application of the new
DFM methodologies to commercial property, with a consideration of issues
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of interest to the real estate investment industry. Granular indexes track
individual local property asset markets defined by the space markets. For
example, a granular index typically tracks prices in a single metro area or
part of a metro such as CBD or suburbs and for a single property usage
type sector such as apartments or office. (In our data we combine three
core non-residential commercial sectors together: office, retail, and industrial
property.) Such ”micro” or granular level tracking of asset prices is important
because the space markets are segmented, not integrated, which can result in
different pricing and different risk and return behavior at the granular level.

But this means that there are dozens of commercial property price series
in a complete database. While distinct and therefore important to track
separately, these dozens of series are also interrelated. They are all part of
the overall commercial property capital market and none of the underlying
space markets are isolated from the US macro-economy. This is exactly
the type of database in which the DFM methodology has been found to be
useful in other fields such as macro-economics. There, it is also known that
DFMs can improve existing forecasting models. The main problem with the
“standard” forecast methodologies for multiple, interrelated time series, such
as vector autoregression (VAR) models, is that they become intractable with
such a large number of time series. (Bernanke et al., 2005).

We believe this is the first study to explore DFM based forecasting to
commercial property price index returns. In the first step, we reduce a large
set of (N) price index returns series into a small set of (M) factors. This is
of interest in its own right, as it provides insights about how commercial real
estate markets co-move. It tells you which property price indexes tend to
move with which factors, which can be of interest to investors for portfolio
management and diversification. In the second step we forecast the M factor
returns by using univariate autoregressive models on all the the M factors.
In the third step we individually forecast the N price index returns using
Autoregressive Distributed Lag (ARDL) models, which include lagged price
index returns and the dynamic factors.

We focus on two distinct markets: Boston apartments and Dallas com-
mercial. Not only are the property types different, the first market is a typical
“supply constraint” market, whereas the second is not. We are specifically
interested in how well the benchmark and ARDL with factors predicted the
crisis and subsequent recovery. Our results show that the benchmark model
almost completely “misses” both events. Indeed, the benchmark model pre-
dicts a price increase (decrease) during the crisis (recovery). In contrast,
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the ARDL model with factors, predicts both events with impressively high
accuracy.

Another benefit of using a DFM is that we do not require any other (third
party) data. Instead of explaining real estate returns using additional macro
economic variables, we use the factor trends returns from the DFM. These
factor return are estimated directly from the panel of indexes. Assuming that
the indexes co-move and using that information is not controversial within
real estate (Francke et al., 2017).

Having reliable asset price forecasts is obviously important from a prac-
tical perspective. Price forecasts are important for tactical level portfolio
management (where to buy and where to sell in the intermediate term). If
(or when) property price derivatives become important, price forecasting will
be essential for pricing real estate derivates (Geltner and Fisher, 2007).

Real Capital Analytics provided to us 80 non-overlapping commercial real
estate property price indexes. The indexes are quarterly between 2001Q1
and 2017Q2. More specific, we observe 40 regions and have a commercial
(combined office, retail and industrial) and apartment index per region. The
regions include 26 metro markets (such as Jacksonville, Boston, Chicago...)
with many of those broken into central versus non-central areas.

Our findings are of interest not only for the overall forecast performance
results, but also for the structural insights they provide about commercial
property asset price dynamics. Generally we find that more factors increase
the DFM model fit. However, the forecasts of property price index returns are
better when only including 1 or 2 factors. In fact, this is a known phenomena
in DFM literature (Eickmeier and Ziegler, 2008).

This paper proceeds as follows. Section 2 provides the DFM used in
this research, and the forecast models. Section 3 provides a description of
the data. The estimated factor trends and forecast results are shown and
discussed in Section 4. Finally Section 5 concludes.

2. Model

2.1. The Dynamic Factor Model

Dynamic factor models fall in the realm of structural time series (Har-
vey, 1989). A structural time series model is a model in which the trend,
error terms, plus other relevant components (like seasonality), are modeled
explicitly. For example, Francke et al. (2017) estimate a repeat sales model
for commercial real estate, in which the variance parameters are allowed to

4



be time-varying (following a random-walk). Other examples of the use of
structural time series in real estate applications include Goetzmann (1992),
Schwann (1998), Francke and De Vos (2000), and Francke (2010).

In this paper, we only consider a structural time series of the form:

data = trends + noise. (1)

In math, suppose we have univariate series of log commercial real estate price
index returns, denoted by ∆pt, observed in period t, with t = 1, . . . , T . We
model log index returns, instead of the log indexes themselves, to account for
issues regarding non-stationarity; log price indexes are typically integrated
of order 1.

The most simple univariate structural time series model, without any
explanatory variables, is given by

∆pt = µt + εt, (2)

µt = µt−1 + ηt−1. (3)

This model is also known as a random walk plus noise model. The term µt
represents the unknown trend of the index returns at period t. The compo-
nents εt and ηt are the error components. It is assumed that εt ∼ N(0, r) and
ηt ∼ N(0, q). The signal-to-noise parameter r/q determines the smoothness
of the trend component, where smaller values give a more smooth trend. A
large signal-to-noise ratio (r/q →∞) coincides with time fixed effects.

Next, suppose we have N price indexes. We could individually estimate a
trend component per price index return series. However, this results in N dif-
ferent trends that all have to be interpreted independently, and interactions
between the estimated trends are ignored. This is especially problematic for
large N . The dynamic factor model aims to overcome these disadvantages by
reducing the N univariate trends to M common factors, where 1 ≤M << N .
To illustrate, suppose we assume M = 2 factors (µm, with m = 1, . . . ,M)
and N = 4 returns (∆pi, with i = 1, . . . , N). The full model is now provided
by (while ignoring the distributions of the error terms and initial conditions

5



for now) 
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]
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The observation errors are given by
ε1
ε2
ε3
ε4


t

∼ N




0
0
0
0

 ,

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44


 , (7)

and the innovation errors by[
η1
η2

]
t

∼ N

([
0
0

]
,

[
q11 q12
q21 q22

])
, (8)

where α is a constant per observed time series (∆pit) and the (M × N)
matrix Γ contain the so-called factor loadings γij. The factor loadings can
be interpreted as the correlation of the price index returns with each factor
return µm. For example, the predicted values of our first time series are
∆p̂1t = µ̂1t∗γ̂11+µ̂2t∗γ̂12+α̂1. Thus, the general idea is that the observations
(∆pit) are modeled as a linear combination of factor returns (µm) and factor
loadings (γij) plus some offsets (αi).

A more general (vectorized) formulation of the dynamic factor model is
given by

∆pt = Γµt + α + εt, (9)

µt = µt−1 + ηt−1, (10)

where ∆pt is a N -vector of log price index returns, and µt a M -vector of
factors. We assume that εt ∼ N(0,R), ηt ∼ N(0,Q) with initial condition
for the factors µ0 ∼ N(m0,V0). The unknown parameters in the model are
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elements of Γ,R,Q,µ,µ0 and V0 and are usually referred to as hyperpa-
rameters.

The hyperparameters can be estimated using the Kalman filter by maxi-
mum likelihood based methods or full Bayesian Markov Chain Monte Carlo
algorithms. In our application we use the Kalman filter, where we estimate
the hyperparameters using the Expectation-Maximization (EM) algorithm.
The advantage of this methodology is that it does not require long time series
(which we do not have, see Section 3). It also converges relatively fast for
large numbers of time series, compared to some of the other methodologies.
Also note that the model is fully Gaussian, which is easy to process in a
Kalman filter framework.

2.2. Identification of the Dynamic Factor Model

The issue is that if one does not constrain Γ, α and Q in Eqs. (9) – (10),
the parameters in the DFM are not identified (see Harvey, 1989, Chapter
4.4). There is substantial literature on how to make the system identifiable,
see for example Harvey (1989); Geweke and Zhou (1996); Aguilar and West
(2000); Forni et al. (2000); Stock and Watson (2002); Bai and Wang (2015);
Aßmann et al. (2016), among many others. We use the constraints introduced
by Zuur et al. (2003), who largely follow Harvey (1989) (Chapter 5.8.1), but
with one crucial difference to make the estimation more robust in the EM
framework (see further below).

First, set γij in Γ to zero if j > i. Thus, the top right corner of matrix
Γ fully consists of zeros. In our previous example, that implies we set γ12 to
zero. More general,

Γ =



γ11 0 · · · · · · 0

γ21 γ22
. . .

...
...

...
. . . 0

...
γM−1,1 γM−1,2 · · · γM−1,M−1 0
γM,1 γM,2 · · · γM,M−1 γM,M

...
... · · · ...

...
γN,1 γN,2 · · · γN,M−1 γN,M


. (11)

Secondly, we set Q equal to a diagonal matrix, implying uncorrelated inno-
vation errors. In our previous example, with M = 2, the variance-covariance
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matrix of the innovation errors is given by

Q =

[
q11 0
0 q22

]
. (12)

We also have to constraint α in a meaningful way. Harvey (1989) suggests
to set the first M values to zero. In our previous example, this would mean,
α = [0, 0, α3, α4]

′. However, Zuur et al. (2003) found that the EM estimates
are not robust to this constraint, and takes long to converge. We therefore
simply demean our data, and omit α altogether. We further standardize the
time series by dividing by its own standard deviation (Bernanke et al., 2005).
This step is not necessary for identification, but does increase the efficiency
(and speed of convergence) of the EM algorithm. Thus, the index return pit
for series i at time t in the measurement equation (9) is replaced by

∆p∗it =
(
∆pit −∆p̄i.

)
/σi, (13)

where ∆p∗it is the transformed index return for series i at time t, and ∆p̄i.
and σi are the average and standard deviation of index return series i.

Finally, following Zuur et al. (2003) the initial condition of the state vector
is specified by a diffuse prior, µ0 ∼ N(0, κI), where κ is large, and I denotes
the identity matrix. Implementing these restrictions and initial conditions
within the EM algorithm is not trivial (Wu et al., 1996). Please consult Zuur
et al. (2003) for the exact algorithm used in this paper, which we will omit
here for space.1

Note that by implementing these restrictions a unique solution for the
factor loadings exists, with one huge caveat. The caveat is that the factors
depend on the ordering of the series; the first factor is determined by the
price index returns of the first series, the second factor by the index returns
of the first two series, etc. Other solutions therefore also exists (Harvey,
1989, p. 450) by simply ordering the series differently.

However, once the parameters have been estimated, a factor rotation can
be applied to the estimated factor loadings and factors. Many techniques
to do the rotation exist in literature (see Harman, 1976; Basilevsky, 1994;
Browne, 2001; Bernaards and Jennrich, 2005, for overviews), like oblimin,

1 Zuur et al. (2003) also show how to handle missing values, and how to enter covariates
in the DFM. However, both are not needed in our research.
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othomax, quterartimax, etc. We use the varimax rotation. Varimax is so
called because it maximizes the sum of the variances of the squared factor
loadings. More specifically, we introduce rotation (M ×M) matrix H, which
is interacted with the factors (µt) and the process errors (ηt);

∆p∗t = ΓH−1µt + εt (14)

Hµt = Hµt−1 + Hηt−1 (15)

The varimax rotation subsequently seeks a a rotation matrix H, that cre-
ates the largest difference between loadings. As varimax is (arguably) the
most widely used technique for rotation. Therefore, most statistical software
packages will have built-in functions for this.

Note that we have no constraints on the variance-covariance R. In our ap-
plication we used a simple diagonal and equal variance-covariance structure.
We did also test diagonal and unequal and equal variance / equal covariance
structures. The results remain similar and are omitted here for the sake of
brevity. Obviously, these results are available upon request. (Technically
we could also specify R to be unconstrained - i.e. unequal variance and co-
variance - however we found that computing time increased considerably by
doing so.)

2.3. Forecasting

Forecasters can predict time series by fitting small-scale time series mod-
els, such as (vector) autoregressive models. These models have been shown to
perform fairly well in the past. However, in this day and age there is a lot of
information available to us which potentially could be useful for predicting.

However, it is not feasible to include every potential relevant variable
simultaneously in a forecasting equation. This becomes especially problem-
atic with large N and/or small T . This is where factor indexes come into
place. Again, the general idea of factor models is that the bulk of variation
of many variables can be explained by a small number of factors or shocks.
Factor models exploit the variables’ co-movement and efficiently reduce the
dimension of the dataset to just a few underlying factors. More specifically,
a relatively small number of factors are entered into a forecasting equation
to predict our returns, and only a few parameters need to be estimated.

Unsurprisingly, forecasting time series (like GDP) using factor models,
have gained in popularity in the last decade or two. For example Eickmeier
and Ziegler (2008) summarize 52 papers where factor models are used for
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forecasting inflation and output for a variety of countries. Most of these
(and other) studies use the factors in an Autoregressive Distributed Lags
(ARDL) framework (Eickmeier and Ziegler, 2008; Barhoumi et al., 2013).

The ARDL with (estimated) factors µ̂mt and price returns ∆pit, is given
by

∆pit = β0 +
M∑
m=1

rm∑
k=1

βmkµ̂m,t−k +

p∑
k=1

φk∆pi,t−k + ζit, (16)

where we assume that the error term is normally distributed, ζit ∼ N(0, σ2
ζ ).

Conditional on the number of lags (p, and rm, for i = 1, . . . ,M), the model
can be estimated by Ordinary Least Squares (OLS). Note that we estimate
Eq. (16) for every price index return series in the data separately, so N -
times. The number of lags is usually determined by the Akaike Information
Criteria (AIC).

In order to use Eq. (16) as a forecasting model, we need forecasts of the
factors µt as well. We forecast the factor returns using an autoregressive
model for each factor individually,

µmt = φ0 +

p∑
k=1

φkµm,t−k + ζmt. (17)

We use Eqs. (16) and (17) to forecast our price index returns ∆pit ”within
sample”. For example, say we have data until 2017. First, we leave out all
2017 data, and subsequently forecast - using data up to 2016 - the returns in
2017.2 We re-do this for multiple periods, like 2016, 2015, and so on. Next,
we compare the forecasts to the actual returns and compute the ”forecast
residuals”. We compare the results to a benchmark model. This benchmark
model is an autoregressive model, so equivalent to Eq. (17). After computing
the forecast residuals in similar fashion for this benchmark model, we can
evaluate whether or not forecasting improves by including the factors.

As noted earlier, this type of three step forecasting procedure (step 1;
estimate DFM, step 2; forecast factors, and step 3; use factors in ARDL

2 In reality, the indexes and factor indexes would revise over time. Thus, we would have
to re-estimate the indexes and factor indexes with data up to only 2016 as well. However,
the indexes are given to us. Thus we are not able to do this. Also, estimating all factor
indexes takes approximately a day on our desktop computer. Re-estimating all the factor
indexes would therefore become intractable.
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framework) has gained in popularity, and its easy to see why. However,
there are also some critiques to this approach. For example, Boivin and Ng
(2006) show that the forecast performance of factor models may worsen if
one (or more) of the factors that are included are irrelevant for the variable
of interest - also known as the oversampling problem. This is partly resolved
by dropping irrelevant factors if the AIC deteriorates for example. Another
issue - and related to the first - is that we have to forecast the factor indexes
themselves as well. This creates extra uncertainty in the forecasts. It should
also be noted that there is evidence that the DFM forecast models improve
with more N and more T (Stock and Watson, 2002; Bai and Ng, 2002).

We use the ARDL forecast model, because; (1) it is the most widely used
forecast model for this purpose, (2) its simplicity and (3) the theory behind
it (Stock and Watson, 1998).3 However, note that scholars have recently
built DFM models which can forecast themselves, by including autoregres-
sive terms in the state equation of the DFM. See for example the ”Factor
Augmented Vector Autoregressive Model” by Bernanke et al. (2005). These
types of models are out of the scope of this research.

3. Data

We obtain our price indexes for a selection of cities from Real Capital An-
alytics (RCA). RCA is recognized as one of the most respected commercial
real estate data firms in the world. RCA focuses on commercial and residen-
tial real estate which were bought and sold by institutional investors. With
their transaction data, RCA estimates repeat sales indexes world wide, using
the repeat sales methodology developed in Francke et al. (2017). For this
study we use 80 non-overlapping Commercial Property Price Indexes (CP-
PIs), which covers commercial (= combination of office, retail and industrial
properties) and residential real estate in the United States on very granular
(metro) level. RCA also has ”all types” (apartments + commercial), state,
regional and country level indexes (plus some other specialty indexes), but
these are left outside of the scope of this paper, as they are overlapping. For
most metros, we observe 2 CPPIs (one for residential and one commercial).

3We also used VAR models to forecast. The general results still hold true. Using a
VAR might be preferable if one is concerned for biases caused by endogeneity. Even though
these results are not given in this paper, they are availably upon request.
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However, in some metros we are able to identify sub-markets, like Manhat-
tan, the Burroughs and the suburbs, in the New York Metro metro area.
The indexes are quarterly and run from 2001 to mid 2017. Our total panel
data is therefore N = 80 and T = 66. For a full overview of all the indexes
we used, please consult the website of RCA.

A graphical representation of all indexes is given in Figure A.1a, where
2006Q4 = 100. Figure A.1b gives the (log) return of all our indexes, and
Figure A.1c gives the ”standardized” returns, using Eq. (13). Note that these
standardized returns are our left-hand side variable in the DFM. Finally,
Figure A.1d gives a histogram of the average quarterly price growth per
market.

[Place Figure A.1 about here]

Overall, the indexes do seem to co-move. Indeed, the indexes go up
prior to the crisis, then crash and subsequently recover starting in approx-
imately 2009. Even though it is not presented here, there is a lot of first
order autocorrelation in the returns, which indicates predictability. This is
not an uncommon find in real estate literature (see Case and Shiller, 1989;
Quan and Quigley, 1991; Barkham and Geltner, 1995; Geltner et al., 2003,
among others). This autoregressive representation (or ‘inertia’) is inherent
to the price formation process in real estate and does not imply arbitrage
opportunities. More specifically: (1) Participants in real estate markets have
incomplete information about the attributes of the purchase, (2) some period
of costly search must be incurred by both buyers and sellers, due to the het-
erogeneity of real estate and (3) trades are decentralized, i.e. market prices
are the outcome of pairwise negotiations (Case and Shiller, 1989; Quan and
Quigley, 1991). Most of the autocorrelation is gone after a year.

Still, there is a big variety in both exact timing and in overall growth
rate. For example, we find that most markets in the major metro areas have
had the highest price growth; New York, Los Angeles and San Fransisco
and had an overall price growth of almost 2% or more per quarter. Also
cities like Miami, Portland and Seattle performed relatively well. On the
other hand, cities like Las Vegas, Chicago, Dallas, Atlanta and Philadelphia
(among others) did poorly. Usually, when apartments had a relative high
price growth in a region, the commercial properties did the same.

You can also see big differences in volatility. High growth markets also
tend to be the most volatile, see for example New York and Los Angeles.
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More interesting is that some low overall growth markets like Las Vegas
and Phoenix also had relative high volatility. Some other markets with low
volatility include Raleigh/Durham and Minneapolis.

4. Results

The factor index returns and corresponding factor loadings are discussed
in Section 4.1. Subsequently we discuss the forecast results in Section 4.2.

4.1. Factors and Factor Loadings

In our research we limit ourselves to a maximum of four factors. One
consideration is computing time; Estimating 5 factors takes almost a day.
Also, it is quite well established that more factors isn’t per se better when
it comes to forecasting. Our results in Section 4.2 confirm this as well. The
reason is that we need to forecast those factors as well, which adds uncertainty
(Section 2.3). We also become subject to the aforementioned ‘over-sampling’.
Admittedly, the model fit (AIC-wise) does seem to improve with higher M .
Still, it should be stressed that there is no consensus in literature to what
the best model fit statistic is in the first place, and other statistics might give
different results. Other than the AIC, we also have the criteria developed
in; Forni et al. (2000); Bai and Ng (2002); Breitung and Pigorsch (2013),
for example. Finally, estimating many factors defeats the purposes of DFM
analysis, which is; Summarizing large quantities of data into a few common
factors. Table B.1 gives some diagnostics of all M , with M ≤ 4. The results
are ordered by model fit (using the penalized AIC), from best to worst.

[Place Table B.1 about here]

The specification with 4 hidden trends, gives the best overall model fit,
even after penalizing the AIC for the increasing amount of parameters. In-
terestingly, is that for forecasting purposes we find that less factor trends
typically works better, see Section 4.2. This - again - buttresses earlier find-
ings in other literature, that more factor trends are not per se better for
forecasting (Eickmeier and Ziegler, 2008).

Next we will turn our attention to the estimated factor returns µ̂tm. Us-
ing Eq. (13) we modeled the standardized returns, and not the returns
themselves. Since it is difficult to interpret the standardized factors, we first
”unstandardize” the factor returns. Next we will explain how this ”unstan-
dardizing” works.
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First, the fitted value of every index can be computed as follows. Let’s
take Boston (commercial) as an example, using a DFM with 1 factor return
(M = 1). The fitted price return for said market is than given by

∆p̂Boston,t =
(
µ̂t × γ̂Boston + ∆p̄Boston

)
σBoston

. Note that we get unique solution because for every market i, the standard
deviation of the returns (σi), the factor loading (γ̂i) and the average return
(∆p̄i) is different. With two factor returns, we get two unique factor loadings,
etc. We simply take the average of each ”unstandardized” factor returns to
get a single measure for each factor. This is given by;

rmt =
1

N

N∑
i=1

(
µ̂mtγ̂mi

)
σi, (18)

where rmt is the unstandardized factor returnm at time t, σ2 are the variances
of the index returns of the different N markets and µ̂mt is the estimated factor
m at time t from the DFM. Next we sum the returns (and exponentiate them)
to get the unstandardized factor indexes.

[Place Figure A.2 about here]

Note, that we do not add back the average price growth trends (∆p̄i)
to the factor returns, as we cannot attribute individual market growth to
a specific factor. Thus all indexes start and stop at 100. (I.e. the indexes
remain demeaned.)

Next we focus on the factor loadings (γ̂mi). “Unstandardizing” the factor
loadings can be done with basic algebra as well, which is equivalent to simply
running a multivariate OLS model per market with the “unstandardized”
data (market index left, factor indexes right) plus a constant. Figure A.3
give the kernal distributions of these factor loadings per M . These results
are also only for the DFM with equal variance and covariance.

[Place Figure A.3 about here]

With M = 1, note that the factor loadings are positive for all index
return series. In general most factor loadings are positive, even with higher
M . We noted earlier in Section 3, that finding co-movement in real estate
literature is not controversial (Geltner and Mei, 1995; Francke and van de
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Minne, 2017; Francke et al., 2017). The spatial distribution of these factor
loadings is given in Appendix C. With M = 1, a higher “unstandarized” factor
loading simply means the index had a higher estimated (return) variance.
The factor loadings with M = 1 are relatively high in Florida. Typically,
the factor loadings are higher for commercial real estate. Factor loadings for
apartments in Boston, Washington DC, California (except for Los Angeles)
and Denver are especially on the low side.

The first factor of the DFM with M = 2 had a high pre-crisis run up,
see Figure A.2. In contrast, the second factor remained relatively stable,
starting at 100 in 2001, and ending at 102 in 2007. The crash is similar
%-wise between the two factors. However, the first factor definitely moved
first. The second factor did experience a more steep recovery, and shows less
volatility overall.

The size of the factor loadings are relatively similar between the two fac-
tors, see Figure A.3. Figures A.8a – A.8b gives the spatial distribution of
these factor loadings. It is evidents that the first and second factor are typi-
cally a mirror image of each other. Indeed, if the loading is high on the first
factor, it is typically low (sometimes even negative) on the second factor and
vice verse. Never do we observe a very high loading on both. If we look at
markets that are mostly impacted by the first factor (red), they are almost ex-
clusively apartments. Examples are apartments in California (not including
San Fransisco), Chicago, Boston, New York, Philadelphia, Washington DC
and Miami. Most of these are also big cities. For commercial, only the Fort
Myers metro area (including Naples and Sarasota) loads almost exclusively
on the first factor. The second factor does load onto both sectors evenly. For
apartments we observe; Seattle, Denver, Dallas, Raleigh/Durham, Nashville,
Washington DC and Atlanta. For commercial we observe; Seattle, Denver,
Dallas, Boston and Dallas. Thus, if the second factor loads onto commercial
in a specific market, so does apartments in some cases.

The factors with M = 3 are given in Figure A.2c. The third (first) factor
is reminiscent of the first (second) factor of the DFM with M = 2. There
are some differences. The first factor goes down more pre-crisis compared
to the second factor in the DFM with M = 2. The second factor is new.
Interestingly, the shape is a very typical boom-bust cycle, one that we also
observed in the DFM with M = 1. The third factor does go down a full year
before the other two. The timing of the crash between the second and third
factor are similar though.

As with the previous examples, the factor loadings are similar in size (Fig-
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ure A.3). Also similar to previous examples, is that the markets are typically
not highly loaded on all factors, but rather one or sometimes two. First,
apartments almost never load highly on the second factor (except perhaps
Charlotte). In contrast, it is the most dominant factor component for com-
mercial real estate in most markets. Apartments load more aggressively on
the low volatile first factor trend. Almost none of the markets load mainly
on the third factor, apart from apartments in North-Carolina and Portland
(OR).

The DFM with M = 4 gives some familiar results, see Figure A.2. We
see again the typical boom-bust factor (factor 2) and the factor trend that
goes down at the beginning of the sample, but also recovers more swiftly
(factor 3). What is “new” is that the third factor from the DFM with M =
3, is “broken up” into two separate factors (factor 1 and 4). They are very
similar. (Which can be interpreted as a hint to stop increasing M .) The
main exception being that the fourth factor shows a bit of the boom-bust
cycle, whereas the first does not.

As previously, the second factor (typical boom-bust cycle) is mainly
loaded on commercial properties. The third factor is again the most dom-
inant factor in apartments. Although quite surprisingly, some commercial
property markets also load on this factor highly; Boston, Denver, Seattle
and Dallas. The “new” factors are more equally loaded on the markets.
Although, the fourth factor seems to impact apartments slightly more.

Because the factors are estimated simultaneously, it cannot be said which
factor trend is “dominant”. Still, a feel for this can be developed by compar-
ing the different factor trends in Figure A.2, and see which pattern prevails.
Arguably, there are 2 factors that are “dominant”. The typical boom-bust
cycle, which we observe in the DFM with M = 1, and the second factor
in the DFM with M = 3 and M = 4, is one. We found that commercial
properties typically load on this factor. The second factor we found multiple
times was factor 2 in the DFM with M = 2, the first factor in the DFM with
M = 3, and the third factor in the DFM with M = 4. This factor slows
down at the beginning of the sample, then drops during the GFC, followed
by a steep recovery. Apartments typically load on this one.

We noted earlier that we cannot attribute the individual price growths to
the factor trends. One exception being the model with 1 factor trend (M =
1). With M = 1, you can add the average return of all the market indexes to
Eq. (18), to get the common trend (= average growth + average cyclicality
from DFM). We have done so in Figure A.4. This can thus be interpreted as
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the US common trend running through all properties. It is therefore useful
- as a robustness check - to compare the index with the readily available
“all types US index” from Real Capital Analytics As the methodology to
estimate both indexes, data (panel versus micro transaction data) and the
exact interpretation are completely different, some differences are expected.4

Still, both indexes have many similarities. Indeed, you can observe the boom-
bust cycle in both cases (although slightly attenuated in the DFM case), and
both indexes end at around 200 index points. Both indexes also show a brief
slowdown, a year before the crisis started. The correlations between the two
indexes are therefore unsurprisingly high, with 0.99 between the index levels
and 0.97 between the index returns. We also add to Figure A.4 simply the
mean of all market indexes in our data per period.

[Place Figure A.4 about here]

4.2. Forecasting

In this Section we add the estimated factors in an ARDL model to fore-
cast individual index returns, as is outlined in Section 2.3, and compare the
performance to a benchmark autoregressive model. We test our forecasting
models on two distinct markets; Boston apartments and Dallas commercial.
Not only are the property types different, the first location is typically “sup-
ply constraint”, whereas the second is not (Saiz, 2010). We will be forecasting
8 quarters out of sample, or 2 years. We focus on two specific points in time;
the eve of the Great Financial Crisis and the subsequent recovery. Both
periods are characterized by a sudden and structural break with the past,
making predictions difficult. We can subsequently compare the forecasted
returns with the actual returns.

We have many combinations of possible optimal lag lengths. We can have
different lags for the (univariate) benchmark model, separate for each index.
The same can be said for fitting the individual univariate factor returns that
need to be forecasted. Finally, when estimating the ARDL, both the AR
coefficient and all the individual factor returns can have its own lag length.
In our application we use every lag between 1 and 8. The only restriction

4 Also, hotels are also included in the all types index by RCA. These are omitted from
our panel data. Hotels represent only a small proportion of total transaction volume, so
the impact is not likely to be substantial.
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we impose is that the amount of lags on the factor trends and the ARDL
are similar, reducing the number of combinations considerably. Note that we
still have four different DFM specifications (with M = 1 through 4). Thus
the total number of possible models is; 4 models × 8 lags = 32. The results
of the “best” benchmark model and the “best” ARDL with factor model is
given in Figures A.5 – A.6, for Boston and Dallas respectively. With “best”
we mean the model that resulted in the lowest forecast residuals.

[Place Figure A.5 about here]

[Place Figure A.6 about here]

The benchmark AR model gives a familiar picture. Past price growth
is taken as the projection for the future. The sudden breaks are therefore
“ignored”. Arguably, only the recovery in Boston is picked up slightly using
the benchmark model. (But too slow and too late.) Somewhat surprising, is
that the best performing benchmark model during the crisis was an AR(1)
specification for both markets. In other words, when allowing for more lags,
the benchmark model predicted even more price growth. During the recov-
ery, the best benchmark model had 5 and 2 lags, for Boston and Dallas
respectively.

In contrast to the benchmark model, the “best” ARDL with factor trends
predicts really well. The crash is clearly visible in both markets, albeit
slightly delayed in Dallas. The recovery is equally impressively forecasted.
Typically, the “best” ARDL models has only 1 or 2 factors and 7 to 8 lags.
The only “outlier” being the model that best predicted the crash in Dallas:
Here the ARDL with 3 factor trends and 1 lag resulted in the best results.

In general, by looking at the results of other markets as well, we find
that the best forecasts are rendered by low M high lag length ARDL models.
These results are omitted to conserve space but are available upon request.
Indeed, in none of our 80 markets do we find that the ARDL with 4 factor
trends (with any lag length) results in the “best” forecasts. As mentioned
before, this is probably caused by by the fact that we have to forecast multiple
factor trends alongside our ARDL, which can result in more uncertainty.

It should be noted that we only present the “best” model based on com-
paring the forecasts with the actual realized returns. But not all ARDL
specifications predicted the crisis so nicely. In fact, “only” approximately 1
in 5 ARDL models predicted a downturn. The best benchmark model also
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outperformed some of the ARDL models.5 Still, an overall rule of thumb is
that if one picks an ARDL with only 1 or 2 factor trends, it will typically
outperform the “standard” benchmark model to a large extent. Interestingly
enough, is that based on the AIC, the ARDL with more factors almost ex-
clusively resulted in better model fit, even after penalizing for the amount of
parameters. The AIC is not the only tool to measure model fit, and future
research could benefit from implementing these different metrics. See Forni
et al. (2000); Bai and Ng (2002); Breitung and Pigorsch (2013) among others.

Obviously, the results are based on the history of the RCA CPPIs, and
there is no guarantee that we will be able to forecast the next big crash. Still,
the results are impressive, especially considering we only used the factors and
not any other data source, like local GDP and interest rates. (which is typical
when forecasting real estate returns.)

5. Conclusion

In the last few years, the growth in the available amount of economic
and financial data has prompted econometricians to develop or adapt new
methods enabling them to summarize efficiently the information contained
in large databases containing many time series. Of these methods, dynamic
factor models (DFMs), has seen rapid growth and is very popular among
macro-economists. These models can be used to summarize the information
contained in a large number of economic (time) series into a small number
of factors common to the original set of (time) series.

In this study we applied a dynamic factor model to commercial property
prices. This is the first time that we can do such a comprehensive study in
commercial real estate, due to the availability of very granular Commercial
Property Price Indexes (CPPIs). We use 80 different CPPIs provided by
Real Capital Analytics. These indexes are on a quarterly basis and run from
2001Q2 to 2017Q2. We estimate the DFM with 1, 2, 3 and 4 factor trends.
Typically, we find 2 factor trends that keep re-emerging. The first is a typical
boom-bust cycle. The second trend was already going down pre-crisis. Its
recovery was also more swift. Commercial real estate tends to load highly

5 During the crash there is also a clear case of “overfitting” with the ARDL model with
high M and high lag length. This is evident from “extreme” high or low forecast, like
predicting a 400% price increase in 2 years after 2007.
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onto the first trend, whereas apartments are more affected by the second
trend described here.

In a second step we use the estimated factor returns in an Autoregres-
sive Distributed Lag (ARDL) model to forecast the individual price returns
2 years into the future. For the Boston apartment and Dallas commercial
markets, we compare the forecast residuals to a “benchmark” Autoregres-
sive (AR) model. Our findings suggests that the ARDL with factors greatly
outperforms the “benchmark” model. The “benchmark” model almost com-
pletely misses the crisis and subsequent recovery, whereas the ARDL with
factors is very accurate. Our results indicate that the forecasts generally
improve when the factors are used. Interestingly, using less factors generally
results in lower forecast error.

Improving forecasts is important in practice, as it is used in asset-allocation
models, and for the pricing of real estate derivatives. Apart from forecasting
per se, the DFM analysis also provides interesting insight about the structure
of real estate returns, in particular regarding co-movements across markets
that are important for portfolio diversification.

The goal of our forecasting exercise was not per se to find the “best” fore-
casting model. For example, we did not use any other explanatory variables.
This can be seen as one of the pros of the DFM framework. (We do not
need any other variables.) However, one can still use other regressors in the
DFM and in the ARDL, and it could improve the forecasts. Also, we found
that using the AIC - even after penalizing it for the amount of parameters -
would typically, not pick the “best” model. Other Information Criteria exist,
but are out of the scope of this research. Finally, other specifications / more
modern versions of the DFM exists, which we did not pursue in this current
study.
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Appendix A. Figures
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Figure A.1: Price indexes and returns.
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Figure A.2: Unstandardized factor indexes with diagonal and unequal variance-covariance
structure.
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(c) Factor loadings, M = 3.
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Figure A.3: Kernal distributions of the (unstandardized) factor loadings with diagonal
and unequal variance-covariance structure.
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Figure A.5: Boston apartment 2Yr forecasts.
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Figure A.6: Dallas commercial 2Yr forecasts.
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(a) Commercial. (b) Apartments.

Figure A.7: Factor Loadings with M=1.

(a) Commercial. (b) Apartments.

Figure A.8: Factor Loadings with M=2.
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(a) Commercial. (b) Apartments.

Figure A.9: Factor Loadings with M=3.

(a) Commercial. (b) Apartments.

Figure A.10: Factor Loadings with M=4.
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Appendix B. Tables

Table B.1: Model fit of different specifications of the DFM, ordered by model fit.

R M logLik K AICc

diagonal and equal 4 -4,992.7 315 10,656.2
diagonal and equal 3 -5,130.8 238 10,760.5
diagonal and equal 2 -5,347.5 160 11,025.3
diagonal and equal 1 -5,588.4 81 11,341.5

R gives the design of the variance-covariance matrix of the observation errors, M is the
number of factors, logLik denotes the Log likelihood, K is the number of parameters,
AICc is the weighted or penalized AIC.
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Appendix C. Spatial Distribution of Factor Loadings

The lowest factor loading per factor index is given a 0, and the highest
factor loading is given a 1. Whenever a factor loading is between the min
and max, the relative position between the two is given. Some markets
are omitted from these figures, as they are a ”rest” category, like ”South
East Rest”. Also, if we have multiple markets within 1 metro we take the
average. This is the case for Chicago, New York, San Fransisco, Miami and
Los Angeles.

[Place Figure A.7 about here]

[Place Figure A.8 about here]

[Place Figure A.9 about here]

[Place Figure A.10 about here]
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