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Search Frictions, Fund Manager Skill, and  

Net-of-Fee Performance in Private Equity 
 

Institutional investment in closed-end Private Equity (PE) funds is characterized by a search and 

matching process that occurs between institutional investors (Limited Partners, LPs) and delegated 

fund managers (General Partners, GPs). Previous research on search frictions in private asset 

markets has primarily focused on fund managers’ search for projects in venture capital (Sørensen, 

2007; Silveira and Wright, 2016; Fox et al., 2018) and in commercial real estate markets (Sagi, 

2021). The implications of LP-GP search and matching frictions on PE market outcomes remain 

unexplored, however.  

This paper is motivated by, and directly extends, the seminal work of Berk and Green (BG, 2004) 

and Berk and van Binsbergen (BvB, 2015). BG provide the first rational model that reconciles the 

existence of skilled mutual fund managers with findings of zero average net-of-fee alpha. In the 

model, investors learn about fund manager skill and elastically supply capital to managers that 

outperform. Skilled managers, who, based on prior performance, are increasingly recognized as 

skilled, manage larger funds and charge higher fees to fully extract the rents they create. Net-of-

fee alpha is therefore zero on average, and there is no persistence in fund performance based on 

benchmarked net-of-fee investment performance. 

BvB extend BG by focusing on the empirical implications of fund manager value creation. They 

argue that, not only is net-of-fee alpha uninformative about fund manager skill, but so is gross-of-

fee alpha. Rather, what matters are the economic rents created as measured in dollar terms. To 

make their point, BvB provide an example (which we modify slightly) of a $10 billion fund that 

generates a 1.0% gross-of-fee alpha. Gross economic profits or rents in this case equal $100 
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million, which is more socially valuable than $100 million dollar fund that generates a 10.0% 

gross-of-fee alpha with gross economic profits or rents of $10 million. The more socially valuable 

fund is 100 times larger than the less valuable fund, with the gross of fee alpha declining due to 

diseconomies of fund scale. The more skilled fund manager further generates ten times the fees 

relative to the less skilled fund manager, at $100 million versus $10 million in management fees. 

In the end, BvB argue that fund size and management fees are reliable measures of fund manager 

skill (which is not directly observable on its own).  

The primary intuitions from BG and BvB, which are specifically generated in the context of mutual 

fund investment, have been transported over to PE with little critical examination of the micro-

founded differences between the two markets. Most importantly, neither BG nor BvB incorporate 

search and matching frictions into their analysis (nor should they given how the mutual fund 

market works), whereas costly search and matching that occurs between LP investors and GP fund 

managers is of first-order importance in PE.  

This is where we come in. To further motivate our search and matching modeling framework, 

consider the following stylized facts. First, although it is well known and fully accepted that risk-

adjusted net-of-fee performance in PE is persistent (e.g., Kaplan and Schoar (2005), along with 

many others), with positive net-of-fee alpha often observed in the data, there has not yet been a 

micro-founded explanation for why fund managers fail to fully extract the rents they create in the 

form of management fees.  

Second, according to BvB, there is a monotonically positive relation between fund size as a proxy 

for fund manager skill and gross-of-fee fund profitability (defined as fund size times gross-of-fee  

alpha). But BvB predicts no such relation for net-of-fee profitability, since fund managers extract 

all of the rents they create in management fees. Table 1 shows that, for Buyout and Real Estate 
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funds, not only is there positive net-of-fee fund profitability (defined as fund size times net-of-fee 

alpha) on average across fund size quintiles, but that net-of-fee fund profitability is increasing in 

fund manager skill as proxied by fund size. Further note the lack of monotonicity in alpha as a 

function of fund size, which highlights the fact that profitability, and not alpha, is what matters 

economically.  

Figure 1 Here 

Third, in both BG and BvB, capital supplied by investors is infinitely elastic, flowing to fund 

managers to the point where investors expect to earn returns equal to their outside option of 

investing in the liquid benchmark. But in search and matching markets like that in PE, not only 

can market supply and demand conditions vary over time and across fund managers (based, for 

example, on the measure of fund managers competing within a given sub-market), but investors 

also need to be compensated for search and matching frictions in PE. This creates a role for “market 

tightness,” which has not been considered as such in the PE literature to date, as an equilibrating 

mechanism that accounts for capital supply and demand in general equilibrium. 

With these facts and relations in mind, we develop a model that extends BG and BvB to account 

for how investment markets actually work and clear in Private Equity. In doing so we adopt the 

directed search framework of Guerrieri et al. (2010). That framework incorporates LP-GP 

matching rates on the extensive margin as well as matching results on the intensive margin, with 

equilibrium determined under both complete and asymmetric information regarding fund manager 

skill.  

In the model, as a starting point, the outside investment option for the LP is a liquid security in 

which expected utility depends on the quantity of capital allocated to the investment, the expected 
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return on investment, and the disutility associated with observing return volatility that occurs 

between the security purchase and sale dates. This outside option provides a benchmark and 

represents the opportunity cost of investing in PE relative to a public market equivalent.  

In PE, fund managers differ in their skill levels, with skill level groups mapping into sub-markets. 

Holding fund size constant, skill is defined as fund manager ability to generate pre-fee investment 

returns in excess of expected returns associated with the liquid benchmark. This excess expected 

return is also labeled as gross-of-fee alpha. As in BG and BvB, there are diseconomies of scale 

that erode alpha as fund size increases. For a given fund size, skill level thus hierarchically orders 

GP sub-market. However, as fund size varies in equilibrium, alphas realized by less skilled fund 

managers can exceed those realized by more skilled fund managers. In fact, in the model as well 

as in the data, we see that it is often the case that less-skilled fund managers realize higher alphas 

than more skilled fund managers. What matters to LP investors, and what is the consequence of 

fund manager skill, is not alpha per se, but how much value is created relative to the outside 

investment option, as it depends on fund size, alpha as a function of fund size, and GP management 

fees.  

In addition to fund diseconomies of scale and management fees, as well as the potential for 

asymmetric information regarding fund manager skill, there are two distinct frictions that exist in 

PE markets that erode LP investor utility relative to the liquid outside option. First, there is an 

entry fee that LPs must pay to enter the PE market. This can be thought of as the cost of assembling 

a specialized team of investment and due diligence professionals that go along with investing in 

private market alternatives. Second, as noted earlier, there is the potential for match failure, the 

probability of which is determined in equilibrium when failure occurs. It results in the LP investor 

redirecting its allocated investment amount back into the liquid outside investment option.  
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Offsetting these costs is one potential benefit to investing in PE relative to the liquid benchmark 

security, which is a reduction in observed investment return volatility. This reduction is often 

referred to as NAV smoothing (Brown et al., 2021; Ercan, Kaplan and Strebulaev, 2025). NAV 

smoothing may generate benefits related to, for example, institutional investor financial reporting 

or agency/fiduciary responsibilities.   

In the full information case, to attract GPs from a particular sub-market, LPs will post a contract 

specifying the investment quantity, or more simply, the desired fund size. GPs that populate a 

particular sub-market will then direct their search to a particular LP investor depending on which 

contract maximizes expected management fees net of fund production costs. Fund production costs 

increase at an increasing rate as a function of fund size, and are only incurred when a LP-GP match 

is successful. Otherwise, conditional on match failure, the GP exits the PE market with a zero 

payoff.  

A key measure that characterizes supply and demand conditions by sub-market is “market 

tightness.”  As noted, once a decision has been made to enter the PE market, LPs post contracts to 

screen GPs based on their skill. GPs, aware of their own skill, strategically select which contract 

to pursue. This results in submarkets with different ratios of LPs posting contracts to GPs seeking 

funding. This in turn affects the probability of a successful match, which not only varies by sub-

market, but also by LP versus GP.  

We show that, in equilibrium in which LP capital is supplied elastically until the expected utility 

of PE investment equals that of investing in the outside option, there is a pecking order of fund 

size, net-of-fee fund profitability, and market tightness that all increase in fund manager skill. 

When the benefits of NAV smoothing in PE are sufficiently small, we show that net-of-fee alphas 

are persistently positive. This is in contrast to BG and BvB, who predict zero net-of-fee alphas on 
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average. The key intuition for understanding the difference largely derives from the “dogs that 

don’t bark” in the PE data. Not only do PE investors need to be compensated for PE market entry 

costs, but also for the costs of a failed match in which the entry costs are sunk, particularly as failed 

matches vary across sub-markets. Those failed matches are not seen in the data of PE investment 

performance – only the successful matches. LP investors realize positive alphas on average in 

order to offset losses associated with failed matches that are not directly observed in the PE 

performance data.  

There is more investor demand for higher-skilled fund managers, which results in larger fund sizes. 

As in BvB, the larger fund sizes can erode gross-of-fee alpha to the point where, in equilibrium, it 

is lower with more skilled fund managers than less skilled fund managers. But, gross-of-fee 

profitability is higher for more skilled fund managers. In our model, so is net-of-fee fund 

profitability. This again happens because of the deal dogs that don’t bark. Market tightness is 

higher due to the greater demand for funds produced by more skilled fund managers, which 

increases the probability of match failure for LP investors. As a result, net-of-fee fund profitability 

increases to offset the costs associated with a higher rate of match failures.  

Thus, under full information, our model shows how differences in GP skill levels naturally 

segment fund managers into separate market tiers, where higher-skilled GPs command greater 

management fees due to larger fund sizes, experience greater market tightness, and achieve 

superior net-of-fee profitability. Our explanation of variation in net-of-fee profits is a foundational 

contribution of this paper. Unlike Berk and Green (2004) and Berk and Van Binsbergen (2015), 

who predict uniform net-of-fee returns across fund manager skill types, our model reveals 

persistent differences in net-of-fee profits across submarkets segmented by GP skill. 
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We further show that asymmetric information further influences market equilibrium through 

adverse selection, requiring LPs to design contracts that incentivize GPs to reveal their true skills 

while deterring imitation by lower-skilled managers. Pecking order relations remain as in the full 

information case, with higher-skill fund managers having to further increase fund size in order to 

successfully separate themselves from lower-skill fund managers.  

We utilize Preqin data to test comparative static model implications. We provide the first empirical 

measure of market tightness in PE by using the subscription ratio reported at the fund level. Net-

of-fee fund alphas are measured following the methodologies of Gredil et al. (2023) and Korteweg 

and Nagel (2024), with a new imputation technique introduced for GPs lacking cash flow 

information (Li and Riddiough, 2024). Empirical results all support comparative static model 

predictions.  

This paper makes several key contributions to the literature. To the best of our knowledge, we are 

the first to investigate the role of search frictions in LP-GP matching. Building on Guerrieri et al. 

(2010), this paper extends their theoretical framework to a PE context and empirically tests its 

implications. The model also expands on Guerrieri et al. (2010) by incorporating a risky outside 

option (public market equivalents) into the general modeling framework.  

Secondly, this study offers a micro-founded contribution to the private equity literature by 

identifying specific forms of illiquidity premia. The first component is a fixed premium reflecting 

LPs’ search costs, a consistent burden due to the inherent illiquidity and informational constraints 

of the private equity market (Phalippou and Gottschalg, 2009; Franzoni et al., 2012). The second 

component stems from sub-market-specific risks of match failures between LPs and GPs, adding 

an additional layer of illiquidity (Axelson et al., 2010; Korteweg and Sørensen, 2017). By 
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distinguishing these forms, this paper clarifies how illiquidity influences PE market dynamics and 

provides a nuanced perspective on its underlying sources. 

Thirdly, existing studies on private equity have not recognized the implications of failed matches 

on PE investment performance measurement.  Not only can we explain, in a rational framework, 

persistently positive net-of-fee alphas with the full extraction of expected economic rents by fund 

managers, but we also generate a pecking order of relations that follow from variation in fund 

manager skill level combined with a failure to match. 

Finally, this paper offers an innovative way of framing the “volatility veil” puzzle observed in 

institutional investments (Barber and Yasuda, 2017; Andonov et al., 2018; Brown et al., 2019; 

Offodile II et al., 2021; Riddiough, 2022). By incorporating smoothed returns into the investor’s 

mean-variance utility function, we show how return smoothing can distort market equilibrium, 

possibly to the point where negative average alphas are obtained when they otherwise would be 

positive. 

The remainder of the paper is structured as follows. Section I presents the directed search model. 

Section II introduces empirical implications of the theory. Section III shows data and measures of 

alpha and market tightness. Section IV provides empirical testing of equilibrium results. Section 

V concludes with a discussion of the findings.  

I. Directed Search and Matching Between LPs and GPs 

I.A. Model Structure 

Following Guerrieri et al. (2010), in our model, the LP investor is the principal and the GP fund 

manager is the agent. There are two points of time: t=0, which is when investment occurs, and 
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t=1, which is when the investment is liquidated and payouts occur. In between t=0 and t=1, 

investment performance can be observed by LP investors, but only imperfectly in the case of PE.   

At t=0, LPs are interested in allocating money to invest in PE. For investment to occur, LPs must 

satisfy a participation constraint that requires expected utility from PE investment, inclusive of 

all fees and related costs, to at least equal the expected utility from investing in the liquid 

benchmark security.  

The expected utility associated with investing in liquid security is also referred to as the LP’s 

outside option, formally expressed as follows: 

 𝑉! = 𝑦 $𝜇! −
"
#
𝜎!#( > 0 (1) 

with the B subscript indicating the liquid benchmark.2 In addition, y>0 denotes the investment 

amount, 𝜇! the expected return from investment, and 𝜎!# the volatility of interim returns. The 

parameter 𝜓 ≥ 0 quantifies the disutility associated with observed return volatility that is 

expected to occur between t=0 and t=1.3  

Now consider the LP’s PE investment option. In this case the LP considers a class of investment 

opportunities that provide the same risk-adjusted expected return and true underlying variance in 

returns as the liquid security. But, interim returns are imperfectly observed and generally 

smoothed.  

GP fund managers differ in their skill levels, which is their ability to generate pre-fee returns in 

excess of risk-adjusted return, 𝜇!. More specifically, suppose there are N different GP types, 

 
2 Note that expected utility depends on incremental investment and not total investment effects. 
3 To simplify and to avoid unnecessary complication, we assume the temporal discount rate from t=0 to t=1 is zero. 
This allows us to ignore discounted differences between the initial investment y at t=0 and the return of that initial 
investment that is realized at t=1. 
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i=1,…,N, with higher skill types corresponding with higher index numbers. Define 𝛼$(𝑦) as the 

measure of GP skill, 𝛼$(𝑦) > 0 and continuous for all 0 < 𝑦 < ∞. Alpha is persistent and 

independent of state contingent outcomes that result from 𝜇! and 𝜎!#. There is a strict 

monotonicity in GP type, in the sense that 𝛼%(𝑦) < 𝛼$(𝑦) for any given y with j<i. Further, 

𝛼$(𝑦) is strictly decreasing and convex in y to account for diseconomies of scale in fund size, 

with 𝛼$(𝑦) approaching zero as fund size becomes arbitrarily large. Finally, we require that 

&'!())
&)

≤ &'"())
&)

 , for any given j<i. This restricts alpha, as a function of fund size, to decline no 

faster for higher-skill fund managers than for lower-skill fund managers. We will sometimes 

refer to the GP type as a PE sub-market. 

There are three costs to PE investment that the LP must bear. First, to enter into the PE market 

the LP must pay a fixed cost of k. This cost is independent of the exact size of the (endogenously 

chosen) investment amount, and can be thought of as the cost of assembling a specialized team 

of investment and due diligence professionals capable of executing all of the necessary complex 

tasks that accompany PE investment. This cost is sunk once the LP decides to enter the PE 

market.  

Second, because PE is a search and matching market, once the LP enters the PE market it will 

post a contract specifying its desired fund size. Based on this posted contract, GP fund managers, 

who differ in their skill levels, will direct their search to the desired contract and hence LP. In 

equilibrium, Guerrieri et al. (2010) show the posted contract is unique with respect attracting a 

particular GP type. Thus, there will be N different contracts posted in equilibrium, creating N 

different sub-markets that correspond to GP type. Search and matching are bilateral, meaning 
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that LPs endogenously choose to post a particular contract, with a one-to-one match occurring 

with a particular GP type.  

Once the initial match occurs, for idiosyncratic reasons there is a probability, 1 − 𝜂$(𝜃), that the 

match will fail for the LP. The possibility of match failure is a cost to participating in the PE 

market. Match failure depends critically on the tightness of the sub-market, 𝜃, as will be defined 

shortly. If the match fails, the LP redirects the allocated investment amount, y, into its outside 

option, the liquid security.  

Third, GPs charge management fees in proportion to fund size, with the proportional 

management fee denoted by 𝜙, 0 < 𝜙 < 1. Offsetting these costs is realizing 𝑦$𝛼(𝑦$), the 

expected (pre-fee) value added from investing in the PE market relative to the outside option of 

investing in the liquid security.  

An additional potential benefit to investing in PE is that the LP investor only imperfectly 

observes return volatility that is realized from t=0 to t=1. The effect is related to NAV 

smoothing that is known to occur in PE, where the volatility of interim reported returns from 

fund investment is smoothed relative to the true return volatility realized from investment in the 

benchmark public market equivalent (Brown et al., 2019; Jackson et al., 2023; Ercan, Kaplan and 

Strebulaev, 2025). This phenomenon has also been referred to in the literature as “volatility 

laundering” (Asness, 2020). Institutional investors, particularly pension fund investors, seem to 

value imperfect accounting information that smooths interim returns, possibly for performance 

reporting or regulatory reasons. In this sense, imperfect return observability potentially generates 

a non-pecuniary benefit for LP investors. We recognize this effect by introducing the disutility 

parameter, 𝜓+, 0 ≤ 𝜓′ ≤ 𝜓, that is specific to PE investment relative to investment in the liquid 

security. 
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With these specified costs and benefits, the LP’s expected utility to enter the PE market can now 

be formally expressed, as follows: 

 𝑉 = 𝜂(𝜃)𝑦 $𝜇! + 𝛼(𝑦) −
"#

#
𝜎!# − 𝜙( + :1 − 𝜂(𝜃);𝑦 $𝜇! −

"
#
𝜎!#( − 𝑘 (2) 

with the sub-market index, i, suppressed for the time being. Expected utility from PE investment, 

V, is the expected utility from PE investment conditional on a successful match, plus expected 

utility from pursuing the outside investment option conditional on an unsuccessful match, less 

the sunk PE market entry fee. Expected utility associated with a successful match accounts for 

positive alpha, the disutility of observing (possibly laundered) interim return volatility, and 

management fees.   

Recalling the PE market participation constraint requiring that 𝑉 ≥ 𝑉!, with VB defined in (1), 

and 𝑉 defined in (2), after some simplification we are left with the following LP investor PE 

market participation constraint: 

 𝜂(𝜃)𝜐(𝑦, 𝜃) = 𝜂(𝜃)𝑦 $𝛼(𝑦) + (","#)
#

𝜎!# − 𝜙( ≥ 𝑘 (3) 

Since k and y are positive, for entry by the LP into the PE market to occur, the bracketed term in 

(3) must be positive at any given y. This eliminates GPs from the market that are unable to 

deliver sufficiently large alphas to offset associated costs. In this sense, fees and costs to 

investing in PE act as a screening device with respect to GP entry into the PE market. Further, to 

ensure utility, and therefore equilibrium, is well-defined throughout, we further require 𝑦𝛼(𝑦) to 

be increasing and concave. This is a weak requirement, consistent with that of Berk and Green 

(2004) and Berk and Van Binsbergen (2015).  
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Now consider in more detail the GP side of the PE market. A GP that belongs to sub-market i 

participates only if it expects to at least break even after earning fees, 𝜙𝑦, and paying fund 

production costs, ℎ(𝑦). The production cost function is continuous, increasing and convex in y, 

with ℎ(0) = 0. Higher-skill fund managers also engage in more efficient production, in the sense 

that ℎ%+(𝑦) > ℎ$+(𝑦), 𝑦 ≥ 0, for sub-market j<i. Lastly, to ensure positive fund sizes in all feasible 

sub-markets, and therefore the existence of feasible allocations to PE, we require &()'"()))
&)

|)-. >

ℎ$+(0) for all i. This again is a weak requirement, and can be thought of as a screening 

requirement for GPs to enter the PE market. 

With this, the GP’s expected utility from entering the PE market can be determined, as follows: 

  𝑈(𝑦, 𝜃) = 𝜇(𝜃)𝑢(𝑦, 𝜃) = 𝜇(𝜃)[𝜙𝑦 − ℎ(𝑦)] (4) 

where, as with LP utility, we suppress i for now. Feasible allocations require the bracketed term 

in (4) to be positive for some y>0, with ℎ+(0) < 𝜙.4  Expected GP utility (profit) is fee revenue 

less fund production cost as they depend on fund size, multiplied by the probability of a 

successful GP match, 𝜇(𝜃). The probability of a successful match depends on market tightness, 

𝜃, that in part depends on the measure of GPs available to participate in a given sub-market. An 

unsuccessful match leads to the GP exiting the PE market with zero profit. 

As noted, there is a fixed measure of GPs that differ by type. The total measure of GPs across all 

sub-markets is normalized to 1.0, with a known fixed proportion of GPs in each sub-market. The 

proportion of LPs that enter and post contracts in each sub-market relative to GPs that attempt to 

match by offering fund investment defines sub-market tightness. Sub-market tightness is, as 

 
4 Once again, this requirement can be thought of as a GP screening condition, where, collectively, satisfying the 
three noted requirements are necessary as well as sufficient for the GP to gain initial entry into the PE market. 
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noted earlier, expressed by 𝜃$. Recalling that the LPs match probability is 𝜂(𝜃), the GP match 

probability is defined as: 

 𝜇(𝜃) = 𝜃𝜂(𝜃) (5)   

LP and GP match probabilities are assumed to be well-defined continuously differentiable 

functions, with the probability of an LP (GP) match, 𝜂(𝜃)	(𝜇(𝜃)), strictly decreasing 

(increasing) and convex (concave) in market tightness, 𝜃. Market tightness as measured by 𝜃 is 

continuous, ranging from [0,∞]. A common example of well-defined market tightness 

parameters is 𝜇(𝜃) = /
01/

 and 𝜂(𝜃) = 0
01/

. 

While there is a finite, known measure of GPs that exist and that are qualified to enter within 

each sub-market, investment demand in PE is infinitely elastic with respect to LP participation. 

In other words, within any given sub-market, LP investors will pay the entry cost, k, and 

continue to enter the market as long as 𝑉 > 𝑉! (expected utility to PE investment exceeds 

expected utility to investing in the liquid security). Free entry will thus endogenously increase 

market tightness, and continue until 𝑉 = 𝑉!. 

We now have the model structure necessary to determine general market equilibrium under 

conditions of full information about GP type. The full information case establishes first-best, 

efficient allocations. Once equilibrium in this environment is characterized, we augment the 

model structure by introducing the potential for adverse selection based on asymmetric 

information regarding GP type. 

I.B. Equilibrium Under Full Information Regarding GP Type 

With the described model structure, we will now define equilibrium and characterize the 

resulting outcomes.  
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First, we note that the three necessary assumptions as stated in Guerrieri et al. (2010, section 2.2) 

on preferences are satisfied. The Monotonicity assumption is satisfied based on the ordering of 

𝛼$(𝑦). The Local Nonsatiation as well as Sorting assumptions are satisfied based on the stated 

model structure under full information.  

Equilibrium is defined as in Guerrieri et al. (2010, section 2.4), with: i) LPs posting a contract 

specifying fund size under free entry, where, in our application, expected utility is maximized 

when taking the outside liquid security investment option into account; ii) GPs direct their search 

based on the posted contract in order to maximize expected profits from participating in the PE 

market; and iii) Market clearing with active participation by GPs within a given sub-market 

depending on the exogenous measure of GPs that are qualified to enter the market, as well as the 

endogenously determined market tightness that, with bilateral trade, results in a certain 

proportion of GPs exiting the market to earn zero profits. Failed matches will also result in a 

certain proportion of LPs (that in general differs from the GP proportions) shifting their 

investment allocation from PE to the liquid outside option. 

LPs further recognize that, in equilibrium, within sub-market, GPs optimize production and 

therefore expected profits based on their endowed skill, knowing that the LP’s participation 

constraint binds with free entry. GPs then direct their search, sorting and matching into the 

appropriate sub-market. Equilibrium allocations are specifically determined with GP in sub-

market i assuming a binding participation constraint in (3), and then replacing 𝜂(𝜃) with 2(/)
/

 

(see equation (5)). Total management fees, 𝜙𝑦, are isolated in (3), with the equivalent terms 

substituted in to equation (4). The result is expected GP utility (profit), 𝑈(𝑦, 𝜃), equal to: 

 𝑈(𝑦, 𝜃) = 𝜇(𝜃) $𝑦𝛼(𝑦) + )(","#)
#

𝜎!# − ℎ(𝑦)( − 𝑘𝜃 (4a) 
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In optimizing (4a) with respect to y and 𝜃, observe that the FOC for optimal fund size is 

independent of market tightness. This separation result greatly simplifies the analysis. Then, 

given the first-best fund size, market tightness that satisfies the free entry condition is 

determined. 

Theorem 1 characterizes equilibrium outcomes as they vary across sub-markets. 

Theorem 1: Equilibrium exists, with optimal y* and 𝜃∗ uniquely determined in each sub-market. 
Under full information regarding GP type, optimal fund size is increasing in GP skill across sub-
markets, as is market tightness.  

Proof: See Appendix A 

Because of the strict ordering of fund manager skill by type, and given &'!())
&)

≤ &'"())
&)

  for any 

j<i, higher-skilled fund managers can, in equilibrium, produce larger investment funds than less-

skilled fund managers. Starting with Berk and Green (2004), a positive causal relation between 

GP skill level and fund size is well documented in the PE literature. Higher GP skill leading to 

larger fund size implies additional LP entry, which increases market tightness. Measuring market 

tightness in the cross-section as we do is new to the PE literature. There is an empirical literature 

that focuses on time-varying fund inflows, available commitments (“dry powder”), invested 

capital and investment performance (see, e.g., Chung et al, 2012), but, to our knowledge, there 

has been no research examining cross-sectional heterogeneity, by sub-market, in market 

tightness as a function of GP skill level 

We now characterize expected net-of-fee profit from PE investment relative to expected profits 

from investment in the liquid security. In the special case of no disutility reduction due to interim 

return volatility laundering (𝜓 = 𝜓′), in equilibrium expected net-of-fee profits from PE 

investment always exceed those from investing in the liquid security. There is, moreover, a strict 
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ordering of expected profits by PE sub-market, with expected profits increasing in GP skill level. 

However, when there is disutility reduction due to interim volatility laundering in PE, these 

relations can break down in equilibrium, with expected profits to PE investment possibly being 

less than expected profits to investing in the liquid security. Corollary 1 summarizes the results. 

Corollary 1: Denote the breakeven fund size in sub-market i as 𝑦E$ , 0 < 𝑦E$ < ∞, and define 
breakeven such that 𝛼$(𝑦E$) − 𝜙 = 0. 𝑦E$ exists and is unique.	Expected net-of-fee profits to PE 
investment exceed those in the liquid security when 𝑦$∗ < 𝑦E$. Otherwise, profits from investing in 
the liquid security equal or exceed profits expected in PE. When there is no disutility reduction 
in PE from interim return volatility laundering – i.e., when 𝜓 = 𝜓′ – it is always the case that 
expected profits realized in PE investment exceed those realized in the liquid security.   

Proof: See Appendix B 

Putting liquidity differences aside, extant work either predicts no difference on average in net-of-

fee expected returns to PE and the benchmark liquid security (Berk and Green, 2004) or no 

difference in net-of-fee expected profits (Berk and Van Binsbergen, 2015). The explanation for 

our relations lies in our search and matching framework. Reference to equation (3), together with 

separation that results in optimal fund size being determined independently of market tightness, 

makes the critical relations clear. The bracketed term in (3) only depends on the optimal fund 

size, 𝑦$∗, and is always positive. When 𝜓 = 𝜓′, it is the case that net-of-fee expected returns and 

profits are always positive, and exceed expected returns and profits to investing in the liquid 

security. In this case, revealed preference also results in a strict ordering of expected net-of-fee 

profits (but not necessarily expected net-of-fee returns) with respect to GP skill level.  

Importantly, expected LP utility prior to entering into the PE market is distinct from expected 

utility conditional on entry and experiencing a successful match. Only the latter is seen in the 

data, while the former is not, providing new insight into PE investment performance 

measurement. More specifically, equation (3) makes clear that, across all PE sub-markets, and 
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prior to entry, expected utility accounts for PE entry costs as well as for successful versus 

unsuccessful matches. But empirically, measurable net-of-fee investment performance relative to 

the liquid benchmark is conditional on a successful match, as summarized by 𝑦$∗[𝛼$(𝑦$∗) − 𝜙].  

Note also that the potential for a reduction in the disutility of interim return volatility in PE 

investment distorts fund size and decreases measured LP investment performance. This happens 

because utility-based benefits from laundering return volatility increases demand for PE relative 

to the liquid security option. If the disutility distortion is sufficiently large, with 𝛼$(𝑦$∗) − 𝜙 

becoming negative, the LP investor becomes willing to accept negative risk-adjusted returns in 

return for observing less volatile interim returns.  

Corollary 2 now formalizes comparative static relations. 

Corollary 2: Optimal fund size is increasing in 𝜓 − 𝜓′ and 𝜎!# when 𝜓 − 𝜓+ > 0, but is 
unaffected by k and 𝜙. Market tightness is similarly increasing in 𝜓 − 𝜓′ and 𝜎!# when 𝜓 − 𝜓+ >
0, while decreasing in k and 𝜙. 

Proof: See Appendix C 

These results are generally intuitive. The greater the reduction in LP disutility due to the 

laundering of interim return volatility, the greater the demand for PE investment. This increase in 

LP demand results in larger fund sizes and increased market tightness, which in turn has the 

effect of decreasing expected net-of-fee investment performance. Notably, these effects are 

magnified for funds holding assets with greater actual interim return asset volatility, 𝜎!#.  

Optimal fund size is unaffected by entry costs and fund manager fees, and follow because entry 

costs are sunk, while GP fees are homogeneous in fund size. In the case of entry fees, k, although 

there is no direct fund size effect, LP demand is curtailed nonetheless to result in lower market 

tightness and therefore a higher probability of LP-GP match survival (as seen in equation (3)). 
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Similarly, although fund size is also independent of the GP fee percentage parameter, higher 

fund manager fees make the PE investment option less attractive relative to the outside liquid 

security investment option to reduce LP demand and therefore market tightness. 

I.C. Asymmetric Information Regarding GP Type 

Now suppose that the GP skill level is unobservable, in the sense that LPs know the proportion 

of entry-qualified GPs across sub-markets, but do not know to which sub-market a particular GP 

belongs. The question is whether LPs can design a contract to enable higher-skill GPs to signal 

their type, at a cost, in order to fully separate from lower-skill GPs. Given the current model 

structure, the answer is no. What is required in addition is an incentive compatibility condition 

applied to lower-skill fund managers that deters them from mimicing higher-skill fund managers. 

This in turn requires higher-skill fund managers to modify fund production, which affects market 

tightness and measurable PE investment returns. 

The constrained optimization problem is formalized as follows. The LP investor’s participation 

constraint expressed in (3) remains as stated. GP utility, 𝑈$(𝑦, 𝜃), as expressed in (4a), also 

remains, where we now explicitly index by sub-market to avoid confusion. 𝑈$(𝑦, 𝜃) is optimized 

with respect to y and 𝜃, subject to the following incentive compatibility (IC) constraint: 

  𝜇(𝜃$) $𝑦$𝛼$(𝑦$) +
)"(","#)

#
𝜎!# − ℎ%(𝑦$)( − 𝑘𝜃$ ≤ 𝑈G% (6) 

j<i, where 𝑈G% is optimally determined by GPs of type-j choosing the contract posted by LPs that 

is targeted to sub-market j.  

The equation on the LHS of equation (6) is utility to GPs of type j that try to match with the 

contract that is posted for GPs of higher type-i. This results in type j GP producing a fund of size 

𝑦$, which generates fees of 𝜙𝑦$. But type-j GPs must bear their own (relatively higher) 
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production costs of ℎ%(𝑦$). The RHS of the inequality is the payoff to the type-j GP when it 

chooses the contract designed for it by LP investors that enter sub-market j. 

The problem is solved sequentially, starting with GPs of type-1. In this case, subject to satisfying 

incentive compatibility, the efficient contract determined under full information is posted by LP 

investors that enter into sub-market 1. This generates utility of 𝑈G0 for type-1 GPs. Now consider 

the optimal contract posted for type-2 GPs by LP investors that enter sub-market 2. In order to 

deter type-1 GPs from trying to match with contracts posted by LPs targeting type-2 GPs, fund 

size and thus market tightness may need to change. Whether or not the contract requires 

modification depends, in general, on the specific functional forms of 𝛼$ and hi in general. When 

no contract modification is required, LP investors that target sub-market 2 post the efficient 

contract. Otherwise the contract is modified to the point in which equation (6) becomes an 

equality, with indifferent type-1 GPs choosing the contract targeted for sub-market 1. The same 

process applies to sub-market 3, and so on, until constrained optimal fund size and market 

tightness are determined in equilibrium across all N sub-markets. 

Theorem 2 summarizes how constrained optimal contracting works in the case of asymmetric 

information relative to the full information case. 

Theorem 2: In the case of asymmetric information regarding GP type, a fully separating 
equilibrium exists in which LP investors targeting sub-market i post contracts that successfully 
attract only type-i GPs. In equilibrium, fund sizes under asymmetric information equal or exceed 
fund sizes under full information, with market tightness also equaling or exceeding those under 
full information. Expected LP investor total profits are higher under asymmetric information, 
although net-of-fee returns are lower. 

Proof: See Appendix D 

The intuition for these results is as follows. When incentives exist for lower-skill GPs to defect 

to mimic higher-skill fund managers, higher-skill fund managers increase fund sizes to the point 
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where lower-skill fund production costs are just high enough to deter defection incentives. 

Increases in fund size actually increase LP expected profits conditional on a successful match. 

This happens because, under full information, the first-best fund size is below the point where 

marginal increases in LP benefits from investing in PE equal marginal increases in fund 

management fees (see equation (3)). The increase in LP investor demand increases market 

tightness. Finally, although expected LP profits increase with the larger fund sizes, alpha is lower 

with the larger fund sizes to decrease returns relative to the full information case. 

Interestingly, when sub-markets are sufficiently distinct and heterogeneous, in the sense that 

there are large differences in GP skill levels or fund production costs across sub-markets, the 

difference in fund size, market tightness, relative PE profits and returns under full versus 

asymmetric information are predicted to be small to negligible. However, as sub-markets become 

less distinct and heterogeneous, it becomes more advantageous for lower-skill fund managers to 

try to mimic higher-skill fund managers. Relative to the full information case, this case predicts a 

rightward shift in LP investor demand to increase fund sizes and market tightness, as well as 

lower returns relative to the liquid security investment option.  
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II. Testable Empirical Implications  

The model generates novel empirical predictions that relate GP skill, fund size, and market 

tightness. There are also novel predictions that recognize the potential influence of asymmetric 

information in private equity markets. 

II. A. Fund size and Profitability 

Similar to predictions following from Berk and Green (2004) and Berk and Van Binsbergen 

(2015), fund size is predicted to increase with GP skill. The model thus predicts that fund size 

reveals GP skill, which is obscured in the data by management fees. Furthermore, the model 

uniquely predicts that incremental net-of-fee profits, as benchmarked to the liquid security, 

increase with fund size and therefore managerial skill.  

II. B.  Market tightness increases in fund size 

Market tightness, formally defined as the LP-to-GP propensity matching ratio, can be measured 

based on LP entry into PE markets and by GP fundraising outcomes. Because GP skill and fund 

size are positively related, with larger fund sizes being associated with greater market tightness, 

market tightness is predicted to increase with GP skill. Market tightness may be measured 

empirically by fund subscription rates or time-to-close. The prediction that tighter markets arise 

in higher-skill segments is novel in the context of PE. 

II. C.  Asymmetric information leads to even larger fund sizes and tighter markets 

When GP skill is unobservable ex ante, LPs need to design a separating contract that induces 

low-skilled fund managers to self-select into the desired contracts. When sub-markets are 

insufficiently heterogeneous, in order to deter lower-skilled fund managers from mimicking 

higher types, these incentive-compatible contracts imply larger fund sizes and greater market 

tightness relative to the full-information case. Net-of-fee alphas are therefore predicted to 
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decrease, but relative profits are predicted to increase. Empirically, in circumstances where skill 

is more difficult to identify, such as in markets with first and second fund offerings, we would 

expect to observe greater heterogeneity in fund sizes and market tightness across sub-markets. 

III. Data and Measures of GP Skill and Market Tightness 

III.A. Data  

This study utilizes Preqin as the primary data source. Preqin offers comprehensive data on 

private equity performance and other characteristic information, with access enabled through the 

Freedom of Information Act (FOIA) and its relationships with LPs and GPs.  

Among other things, Preqin reports fund absolute performance (net internal rate of return, net 

IRR) on a quarterly basis. Net IRRs are calculated from fund-level cash flows, reported either by 

GPs or by LPs. Preqin’s performance data aligns with other leading private equity data providers, 

such as Burgiss and Cambridge Associates (see, e.g., Harris, et al., 2023; Gupta and Van 

Nieuwerburgh 2021). Given the varying methodologies employed by these providers, it is 

unlikely that they share identical biases. To ensure the reliability of performance measurement, 

we restrict the sample to liquidated funds (Chung et al., 2012). Preqin also provides target fund 

size and realized fund size information, which allows us to generate an empirical measure of 

market tightness at the fund level.  

The final sample covers two types of North American private equity funds with vintage years 

between 1977 and 2018, including private equity real estate funds and buyout.5 During this 

period, private equity real estate funds have the largest number of funds with absolute 

 
5 Buyouts and private equity real estate share similar fund structure with an average fund life of ten years. We do not 
include venture capital in this study as it has different structure and high return skewness. We focus on North 
American funds because they are the largest PE market and share similar regulations. 
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performance and fund size information (761 funds, about $240.21 billion capital raised), 

followed by buyout (667 funds, about $517.32 billion capital raised). 

III.B. KN-Direct Alpha 

The KN-Alpha (2024) (Korteweg and Nagel, 2024) framework provides a refined approach to 

measuring net-of-fee risk-adjusted performance of private equity funds. Unlike absolute 

performance metrics such as IRR, the KN-Alpha emphasizes the timing and magnitude of cash 

flows while aligning them with benchmarks to isolate the fund’s abnormal return. The KN-Alpha 

method is a stochastic discount factor (SDF) asset pricing approach that generalizes the Kaplan-

Schoar PME performance measure. 

Specifically, the KN-Alpha formulation compares the discounted present value of cash 

inflows (distributions) to cash outflows (contributions). This relationship is expressed as:  

                                                     𝛼 = ∑ 4!
5$
%(%)

−6
%-0 ∑ 7&

5$
%(8)

9
8-0                                         (1) 

where 𝑋% represents investor the distributions received at time 𝑗, and 𝐶8 denotes the investor 

contributions made at time 𝑘. The discount factor, 𝑅:;, is defined as: 

                             𝑅:; = exp	{𝑟:
< + 𝛽:𝑟:= − 𝑟:

<; − :
#
𝛽(𝛽 − 1)𝜎#}                         (2) 

where 𝑟:
< is the risk-free rate, 𝑟:= is a vector of factor returns, 𝛽 is a vector that measures the 

sensitivity of fund returns to factor returns, and 𝜎# is a vector that captures the variance of 

returns. This formulation ensures that the performance evaluation accounts for broader market 

conditions and the fund’s exposure to systematic risk. 

Factor benchmark selection is based on the work of Gupta and Van Nieuwerburgh (2021) and 

Korteweg and Nagel (2024). We use a one-factor version of the model tailored to capture risks 
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that are specific to the PE asset class For buyout funds, we adopt the large-value index (BH-M) 

to reflect buyout investments in mature and stable companies. For real estate, we follow the work 

of Gupta and Van Nieuwerburgh (2021), who show that real estate fund returns primarily load on 

listed REITs. Accordingly, we use the FTSE NAREIT All Equity REIT Index as the benchmark 

for real estate funds.  

An issue with the KN-Alpha method is that it does not adjust for cash flow duration. This makes 

it hard to compare benchmarked performance between alternative investments that might have 

different cash flow timing. Gredil et al. (2023) address this duration issue by asking the 

following question: What constant number 𝐷𝑅 (direct alpha), 𝐷𝑅	 ≥ −1.0, will, as an augment 

to the benchmark discount rate, generate 𝛼 = 	0.0?  

                                ∑ 𝑋% ∗
(01>5)'($)!)
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Equation (3) ensures that the performance is accurately adjusted to reflect both the timing and 

risk exposure of the fund’s cash flows, yielding an annualized abnormal return that is 

comparable across funds. 

To evaluate KN-DR, we require complete fund-level cash flow information, which is highly 

missing in the Preqin data. To address this issue, we employ the Fund Covariant Regression 

(FCR)-LASSO imputation method developed by Li and Riddiough (2024). This machine-

learning approach estimates direct alphas for funds with missing cash flows using a model 

trained with funds that have cash flow information. 

We follow the same setting in  Li and Riddiough (2024), which also uses the Preqin dataset, and 

which shows that Fund-IRR is the most important factor in estimating alpha. They also show that 

funds with and without cash flows follow similar distributions in Fund-IRR, resulting in a high 

estimation precision with little or no bias. The FCR-LASSO model is trained using both 
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liquidated and non-liquidated funds, incorporating 84 covariates to capture various fund 

characteristics. These covariates include log of Fund-IRR and benchmarked market IRR, the 

original, quadratics, and cubic terms of fund life, fund sequence number, and fund size, and 

interaction terms between fund size and year dummies. The model further accounts for potential 

reporting biases by considering whether the funds are liquidated, whether the GP is publicly 

listed, whether cash flows are reported for all or some prior funds, and whether the GP follows a 

single-strategy focus. 

Table 1 About Here 

Panel A of Table 1 shows the estimated factor loading results across real estate and venture 

capital. Real estate funds show a moderate beta of 0.747. In the case of buyout funds, the asset-

specific beta is 0.461. Panel B of Table 1 shows the performance of the FCR-LASSO model in 

simulating direct alpha for fund without fund-level cash flow information. The root mean 

squared error (RMSE) values are 2.809% for real estate and 1.856% for buyouts. These estimates 

imply that, collectively, the imputed alphas are more than 96% likely to fall within 0.25% of the 

true values.6 

Panel C of Table 1 shows final sample sizes for real estate and buyout, with 761 real estate funds 

and 667 buyout funds included in the analysis. The risk-adjusted KN-DR metric averages 

9.602% for buyout funds. In contrast, real estate shows an average of 3.061%. The standard 

deviation of KN-DR equals 17.91% for buyout and 13.52% for real estate. 

III.C. Market Tightness 

 
6 See Li and Riddiough (2024) for details. 
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To empirically measure market tightness, we employ the subscription ratio, defined as the 

realized fund size divided by the target fund size. This ratio is calculated at the fund level. A 

ratio above one indicates that investor demand exceeds supply, implying tighter market 

conditions.7 

Table 2 presents summary statistics for market tightness across different vintage years for private 

equity real estate and buyout funds. For real estate funds, the mean subscription ratio increased 

from 1.004 (SD =0.279) prior to 2005 to 1.057 (SD = 0.289) during the 2005–2008 period, 

before declining to 0.975 (SD = 0.310) for post-2008 vintages. For buyout funds, the average 

subscription ratio was highest prior to 2005 at 1.070 (SD = 0.331), declining to 0.949 (SD = 

0.335) in the 2005-2008 vintages, and then equaling 0.972 (SD = 0.332) for post-2008 vintages.  

Overall, the results suggest that market tightness is procyclical, with a higher oversubscription 

rate during pre-GFC vintage years, with reduced market tightness during and after the financial 

crisis. 

Table 2 About Here 

IV. Empirical Testing of Search and Matching Model Predictions 

In this section, we test the empirical implications outlined in Section II.  

IV. A. Relationship between Fund Manager Skill and Fund Size 

Our search model framework predicts that net-of-fee profits, defined as Fund Size times net-of-

fee Alpha, measure fund manager skill. Tables 3.A through 3.C report relationships among fund 

 
7 In labor market research, market tightness is commonly measured as the ratio of job vacancies to unemployed 
workers (Shimer, 2005), where a higher ratio indicates greater demand for labor relative to supply. Our measure 
serves as an analogous concept in fundraising. Just as a high vacancy-to-unemployment ratio reflects a tight market 
for employers, a subscription ratio above one indicates excess investor demand relative to fund supply, which 
implies tighter fundraising conditions. 
 



29 
 

size, net-of-fee profits, and net-of-fee direct alpha by fund size quintiles and fund sequencing 

groups within fund managers for the full sample, real estate funds, and buyout funds, 

respectively. As shown in the full sample, there is a strong positive relationship between fund 

size and net-of-fee profits. In the full sample (Table 3.A), the average profits increase from $5.41 

million in the lowest size quintile (Q1) to $92.18 million in the highest (Q5). This monotonic 

increase is consistently observed across sequencing groups, which is consistent with the model’s 

prediction that fund size reflects GP skills. 

Table 3 About Here 

This positive relationship between fund size and profits is also evident within each asset class. 

For real estate funds (Table 3.B), profits generally increase across size quintiles, though the 

pattern is less apparent than in the full sample. In most sequences, such as Sequences #3, #4, and 

#5, there is a clear increase in average profits from Q1 to Q5. For example, in Sequence #4, 

average profits rise from $2.88 million in Q1 to $87.23 million in Q5. However, in sequence #6, 

for instance, average profits fall sharply in Q5. Such non-monotonicity is consistent with the 

findings of Li and Riddiough (2023), who find that after fund sequence #5, real estate returns 

drop significantly. This may reflect greater heterogeneity in LP preferences and the role of 

volatility disutility reductions. 

It is important to note that, across all asset classes and sequencing groups, direct alpha does not 

monotonically increase with fund size. Consistent with the arguments of Berk and van 

Binsbergen (2015), this indicates that KN-DR does not reliably reflect GP skill. For example, in 

the full sample (Table 3.A), average DR declines from 9.60% in the smallest quintile (Q1) to 

4.42% in the largest (Q5), reflecting a decrease in returns to scale. Similar patterns are observed 
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in real estate, where DR often turns negative in higher quintiles despite rising profits. Even in 

buyouts, where performance sorting is more evident, DR remains flat or peaks in lower quintiles. 

These findings are consistent with the model’s prediction that alpha does not rise with skill, and 

that fund size and profits, not alpha, are more informative measures of GP ability. 

To formally examine the relationship between fund size and net-of-fee profits, Table 4 presents 

OLS regressions where the dependent variable is fund-level net-of-fee profit. The key 

explanatory variable is fund size, with controls for lagged direct alpha (KN-DR) of the same 

fund manager, log fund sequence, and fixed effects. Fund sequence number serves as a proxy for 

asymmetric information: lower sequence numbers indicate earlier funds in a fund manager’s 

track record and thus greater asymmetric information. Columns (1)-(3) exclude fund sequence 

fixed effects but include the log of fund sequence number, while Columns (4)-(6) incorporate 

fund sequence fixed effects but do not include the log of fund sequence number. Vintage fixed 

effects are included in Columns (3) and (6). 

Table 4 About Here 

In the full sample (Panel A of Table 4), the coefficient on fund size is positive and highly 

significant across all specifications, ranging from 0.078 to 0.092. The coefficient on lagged DR 

is strongly significant, indicating persistence in net-of-fee profits. The addition of vintage and 

fund sequence fixed effects in Columns (4)-(6) has limited impact on the estimated effect of fund 

size. In the case of fund sequence, the coefficient is negative but not significant, indicating a 

limited impact of asymmetric information regarding fund manager skill on net-of-fee profits. 

Panel B focuses on real estate funds. The estimated coefficients on fund size remain positive and 

are statistically significant at the 10% level in most specifications. Notably, the coefficient on the 
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log of fund sequence is negative and statistically significant in Column (1), consistent with the 

model prediction that earlier sequence funds face greater asymmetric information in fundraising 

and thus generate higher profit. Panel C shows results for buyout funds. The relationship 

between fund size and profits is stronger and more significant. The coefficient on fund size 

remains statistically significant at the 1% level across all columns, with values around 0.08. 

Lagged DR is also significant. However, the coefficients on fund sequence are not significant, 

again indicating limited impact of asymmetric information fund manager skill on market 

outcomes. 

IV. B. Relationship between Fund Manager Skill and Market Tightness 

Table 5 About Here 

Tables 5.A through 5.C present the relationship between fund size and market tightness across 

quintiles of fund size and sequencing groups, for the full sample (Table 5.A), real estate funds 

(Table 5.B), and buyout funds (Table 5.C), respectively. In the full sample, tightness increases 

from 0.84 in Q1 to 1.14 in Q5. This monotonic pattern is consistently observed across almost all 

sequence groups. For example, in Sequence #2, tightness increases from 0.92 in Q1 to 1.17 in 

Q5. These results are consistent with the model’s prediction that market tightness increases with 

fund size. 

Results are also consistent within each asset class. Real estate funds (Table 5.B) show a general 

increase in tightness with fund size. For instance, in Sequence #1, tightness increases from 0.81 

in Q1 to 1.11 in Q5, and in Sequence #2 from 0.95 to 1.08. On the other hand, buyout funds 

(Table 5.C) exhibit a particularly strong size-tightness relationship. Overall, tightness rises from 

0.80 in Q1 to 1.14 in Q5. Similar trends hold within most sequence groups.  
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Table 6 About Here 

To formally test these relationships, Table 6 presents regressions of tightness on fund size, with 

the control of lagged direct alpha (KN24-DR), the log of fund sequence, and fixed effects. In the 

full sample (Panel A), fund size is positively and significantly associated with tightness in all 

specifications, with coefficients ranging from 0.068 to 0.076. Similar results hold for real estate 

(Panel B) and buyouts (Panel C). The coefficient on lagged DR is consistently positive and 

significant, and the log of fund sequence is negative and significant, particularly in buyouts, 

which supports the prediction that asymmetric information increases market tightness in earlier-

stage funds of fund managers. 
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V. Conclusion 

In this paper, we develop a general equilibrium model of search in private equity to examine how 

institutional investors and fund managers interact within a framework shaped by fund manager 

skill and search frictions. The model shows that high-skill GPs oversee larger funds and operate 

in tighter submarkets, achieving higher net-of-fee profits. The presence of adverse selection due 

to asymmetric information about GP skill alters these outcomes by increasing market tightness 

and optimal fund size as LP investors modify their strategies to screen out imitators. By 

accounting for a possible disutility reduction based on the smoothing of reported investment 

returns, the model further predicts larger fund sizes, higher market tightness, and the potential for 

negative alphas.  

Using novel proxies for GP skill and market tightness, we provide empirical support for the 

model’s core predictions. We find that net-of-fee profits and market tightness increase with GP 

skill across fund types (as proxied by fund size), where, as predicted, alpha does not reliably 

measure fund manager skill.  

This paper contributes to private equity literature by offering a comprehensive framework that 

links search frictions, adverse selection, and profits in a single model. It further extends prior 

work by empirically testing these theoretical constructs in a private equity setting. Our findings 

provide insights into how private market participants adjust their strategies in response to search 

frictions and adverse selection.  
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Figure 1: Relationships between fund size quintiles and profits 
Note: this figure combines both buyouts and real estate funds. 
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Table 1: Performance of KN-Alpha Model across Asset Classes 
 Real Estate Buyouts 
Panel A: Beta Estimation 
𝛽+,-./0 0.747 0.461 
Panel B: ML-LASSO Performance 
RMSE 2.809 1.856 
Confidence level with 0.25% tolerance 96.072% 99.995% 
Panel C: KN24-DR Summary 
N 761 667 
Average KN24-DR 3.061 9.602 
Median KN24-DR 3.577 8.289 
SD-KN24DR 13.522 17.911 
Note: Panel A presents the estimated CRSP and asset-specific betas across the two asset 
classes. Panel B reports the RMSE values, along with the confidence levels achieved with a 
0.5% tolerance. Panel C summarizes the KN24-DR performance statistics, including the 
average, median, and standard deviation, as well as the sample sizes for each asset class. 
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Table 2: Market tightness 
Vintage N Average min median max std 

Panel A: Real Estate 
<2005 107 1.004 0.240 1.001 1.616 0.279 
>=2005 & <=2008 107 1.057 0.251 1.063 2.000 0.289 
>2008 32 0.975 0.133 1.016 1.400 0.310 

Panel B: Buyouts 
<2005 71 1.070 0.350 1.000 2.500 0.331 
>=2005 & <=2008 116 0.949 0.120 1.000 1.827 0.335 
>2008 152 0.972 0.225 1.000 2.136 0.332 
Note: the market tightness is measured by subscription ratio. 



37 
 

Table 3.A: Full sample profits by sequence and fund size groups 
Overall 

 

Sequence #1 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

Weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 274 61.09 5.41 9.60 8.85  107 27.41 4.04 12.26 14.74 
Q2 288 169.32 12.20 7.07 7.20  109 76.90 5.54 7.66 7.20 
Q3 285 318.73 12.63 4.55 3.96  108 162.27 9.45 5.58 5.82 
Q4 288 549.47 32.56 4.95 5.93  109 311.05 19.60 6.41 6.30 
Q5 (Highest) 291 1521.94 92.18 4.42 6.06  109 955.09 52.71 6.38 5.52 

Sequence #2 

 

Sequence #3 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 62 50.04 4.37 9.16 8.73  40 81.43 3.71 4.94 4.56 
Q2 64 145.79 13.87 9.04 9.51  42 197.33 14.97 6.20 7.59 
Q3 63 251.11 16.90 5.58 6.73  42 357.52 22.26 5.63 6.23 
Q4 64 448.22 28.28 5.52 6.31  42 622.24 26.20 2.84 4.21 
Q5 (Highest) 64 1206.39 33.29 2.02 2.76 

 

42 1632.81 107.80 4.46 6.60 
Sequence #4 Sequence #5 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 21 89.98 6.04 8.48 6.71  12 67.83 9.67 12.97 14.25 
Q2 23 202.76 20.44 8.86 10.08  14 274.67 23.94 6.14 8.71 
Q3 22 391.31 23.64 2.85 6.04  14 458.08 57.52 8.29 12.56 
Q4 23 696.71 55.47 9.30 7.96  14 838.99 66.32 0.86 7.91 
Q5 (Highest) 23 1963.12 118.27 5.91 6.02  14 2358.11 248.56 5.65 10.54 

Sequence #6 

 

Sequence >#6 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 9 118.34 6.48 5.26 5.48  23 159.94 14.28 7.52 8.93 
Q2 10 265.85 8.86 0.52 3.33  26 446.04 20.56 3.64 4.61 
Q3 10 431.98 -4.00 -4.39 -0.93  26 889.83 -29.83 -2.59 -3.35 
Q4 10 1049.94 47.07 1.07 4.48  26 1201.97 64.98 1.20 5.41 
Q5 (Highest) 11 3811.16 146.02 -2.25 3.83  28 2603.80 236.27 3.00 9.07 
Note: Table 3.A reports summary of both real estate and buyouts by fund size quintiles across different sequencing groups. Within each sequence, funds are sorted 
into quintiles based on size. For each quintile, the table shows the number of funds, average fund size, average profit, the simple average direct alpha (DR), and 
the fund-size-weighted average DR. Quintile 1 includes the smallest funds, and Quintile 5 the largest. The weighted DR is calculated using fund size as weights. 
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Table 3.B: Real Estate profits by sequence and fund size groups 
Overall 

 

Sequence #1 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

Weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 146 32.11 1.99 6.14 6.21  49 17.06 0.69 4.77 4.07 
Q2 154 90.48 3.72 4.84 4.11  50 47.62 2.36 5.48 4.96 
Q3 152 179.72 1.10 1.80 0.61  50 116.66 3.85 4.01 3.30 
Q4 154 334.24 5.99 2.87 1.79  50 252.56 14.45 5.56 5.72 
Q5 (Highest) 155 921.27 3.94 -0.18 0.43  50 549.54 1.76 1.12 0.32 

Sequence #2 

 

Sequence #3 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 32 28.50 2.56 8.90 8.97  22 33.28 2.50 6.32 7.53 
Q2 33 75.33 4.38 6.03 5.82  23 85.71 4.59 4.77 5.35 
Q3 33 147.13 2.63 2.16 1.79  23 167.98 7.94 4.42 4.72 
Q4 33 267.70 11.03 3.92 4.12  23 356.85 0.87 0.39 0.24 
Q5 (Highest) 33 714.82 -12.65 -2.29 -1.77 

 

23 1069.54 25.52 1.05 2.39 
Sequence #4 Sequence #5 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 12 34.93 2.88 6.99 8.24  8 55.76 0.98 3.40 1.75 
Q2 13 88.51 6.12 6.63 6.91  9 157.97 5.61 3.32 3.55 
Q3 12 162.62 -1.24 -0.19 -0.77  9 265.48 5.50 1.94 2.07 
Q4 13 306.67 29.69 10.54 9.68  9 432.33 -30.41 -6.25 -7.03 
Q5 (Highest) 13 1263.54 87.23 5.61 6.90  9 1110.06 42.91 1.00 3.87 

Sequence #6 

 

Sequence >#6 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 6 51.07 2.42 4.45 4.74  17 60.93 3.72 5.94 6.11 
Q2 7 138.83 -1.37 -2.39 -0.99  19 186.95 4.45 3.33 2.38 
Q3 7 280.69 -29.20 -9.40 -10.40  18 358.88 -6.92 -2.78 -1.93 
Q4 7 557.50 -15.26 -2.57 -2.74  19 527.51 -9.98 -1.96 -1.89 
Q5 (Highest) 7 1548.67 -148.30 -7.92 -9.58  20 1493.69 -6.44 -2.92 -0.43 
Note: Table 3.B reports summary of real estate by fund size quintiles across different sequencing groups. Within each sequence, funds are sorted into quintiles 
based on size. For each quintile, the table shows the number of funds, average fund size, average profit, the simple average direct alpha (DR), and the fund-size-
weighted average DR. Quintile 1 includes the smallest funds, and Quintile 5 the largest. The weighted DR is calculated using fund size as weights. 
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Table 3.C: Buyouts  profits by sequence and fund size groups 
Overall 

 

Sequence #1 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

Weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 128 94.15 9.30 13.55 9.88  58 36.15 6.87 18.58 19.00 
Q2 134 259.93 22.60 9.97 8.70  59 101.72 8.23 9.51 8.09 
Q3 133 477.60 24.15 7.10 5.06  58 201.59 14.32 6.96 7.10 
Q4 134 796.82 64.07 7.62 8.04  59 360.62 23.93 7.12 6.63 
Q5 (Highest) 136 2206.54 192.76 9.66 8.74  59 1298.77 95.90 10.84 7.38 

Sequence #2 

 

Sequence #3 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 30 73.01 6.30 9.43 8.64  18 140.27 5.18 3.25 3.69 
Q2 31 220.79 25.70 12.83 11.64  19 332.44 27.54 7.94 8.28 
Q3 30 365.48 30.80 8.75 8.43  19 586.96 39.60 7.10 6.75 
Q4 31 640.40 46.65 7.23 7.29  19 943.51 56.87 5.80 6.03 
Q5 (Highest) 31 1729.67 82.20 6.61 4.75 

 

19 2314.66 207.40 8.58 8.96 
Sequence #4 Sequence #5 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 9 163.39 10.25 10.45 6.28  4 91.98 27.05 32.11 29.41 
Q2 10 351.29 39.06 11.76 11.12  5 484.74 56.93 11.21 11.74 
Q3 10 665.75 53.51 6.49 8.04  5 804.76 151.16 19.72 18.78 
Q4 10 1203.77 88.98 7.68 7.39  5 1570.96 240.44 13.66 15.31 
Q5 (Highest) 10 2872.57 158.62 6.29 5.52  5 4604.60 618.73 14.02 13.44 

Sequence #6 

 

Sequence >#6 

Group N 
Fund Size 

($mn) 
Profit 
($mn) 

Simple average 
DR(%) 

weighted 
average DR(%) N 

Fund Size 
($mn) 

Profit 
($mn) 

Simple average 
DR(%) 

Weighted average 
DR(%) 

Q1 (Lowest) 3 252.90 14.61 6.88 5.78  6 440.47 44.19 12.00 10.03 
Q2 3 562.23 32.73 7.31 5.82  7 1149.29 64.28 4.48 5.59 
Q3 3 785.00 54.80 7.29 6.98  8 2084.46 -81.39 -2.17 -3.90 
Q4 3 2198.97 192.50 9.56 8.75  7 3032.67 268.44 9.79 8.85 
Q5 (Highest) 4 7770.53 661.09 7.68 8.51  8 5379.08 843.03 17.80 15.67 
Note: Table 3.C reports summary of buyouts by fund size quintiles across different sequencing groups. Within each sequence, funds are sorted into quintiles 
based on size. For each quintile, the table shows the number of funds, average fund size, average profit, the simple average direct alpha (DR), and the fund-size-
weighted average DR. Quintile 1 includes the smallest funds, and Quintile 5 the largest. The weighted DR is calculated using fund size as weights. 
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Table 4. Relationships between profits and fund size 
Panel A: All 

VARIABLES (1) (2) (3) (4) (5) (6) 
       
Fund size 0.078*** 0.089*** 0.091*** 0.079*** 0.090*** 0.092*** 
 (0.015) (0.013) (0.013) (0.015) (0.013) (0.013) 
Lag_DR  1.630*** 1.539***  1.589*** 1.503*** 
  (0.395) (0.419)  (0.380) (0.407) 
Ln(fund sequence) -6.194 -3.825 -6.969    
 (6.178) (8.055) (8.946)    
Constant -5.279 -26.311** -27.168 -5.872 -33.188*** -31.237* 
 (4.978) (12.611) (19.519) (4.455) (8.172) (17.755) 
       
Observations 1,428 842 842 1,428 842 842 
Adjusted R-squared 0.236 0.340 0.359 0.248 0.354 0.371 
Fund sequence number FE NO NO NO YES YES YES 
Vintage FE NO NO YES NO NO YES 

Panel B: Real Estate 
Fund size 0.045 0.049 0.050* 0.046* 0.050* 0.051* 
 (0.029) (0.030) (0.029) (0.028) (0.029) (0.027) 
Lag_DR  0.676* 0.438  0.610 0.311 
  (0.360) (0.426)  (0.381) (0.458) 
Ln(fund sequence) -9.631*** -10.127 -8.715    
 (3.694) (6.504) (7.627)    
Constant -2.335 -4.592 -3.663 -4.432 -16.055* -20.216 
 (6.311) (11.089) (10.051) (6.110) (9.294) (14.198) 
       
Observations 761 479 479 761 479 479 
Adjusted R-squared 0.078 0.103 0.146 0.109 0.128 0.176 
Fund sequence number FE NO NO NO YES YES YES 
Vintage FE NO NO YES NO NO YES 

Panel C: Buyouts 
Fund size 0.076*** 0.093*** 0.096*** 0.078*** 0.097*** 0.098*** 
 (0.019) (0.016) (0.015) (0.020) (0.015) (0.015) 
Lag_DR  2.203*** 2.149***  2.002*** 2.042*** 
  (0.722) (0.820)  (0.603) (0.731) 
Ln(fund sequence) 15.771 19.707 -0.989    
 (18.250) (26.234) (26.948)    
Constant -5.598 -56.636** -49.096 -1.294 -43.855*** -47.243 
 (8.156) (28.566) (36.395) (6.792) (14.866) (30.717) 
       
Observations 667 363 363 667 363 363 
Adjusted R-squared 0.248 0.360 0.377 0.301 0.430 0.430 
Fund sequence number FE NO NO NO YES YES YES 
Vintage FE NO NO YES NO NO YES 
Note: Table 4 reports OLS regressions of fund profit on fund size, with additional controls for the lagged 
direct alpha of the same fund manager, fund sequence, and vintage fixed effects.  Robust standard errors 
in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 
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Table 5.A: Full sample tightness by sequence and fund size groups 

Group 
Overall 

 
Sequence #1 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 107 79.79 0.84 0.83  36 33.23 0.79 0.80 
Q2 117 210.69 0.96 0.94  38 102.44 1.00 1.02 
Q3 117 362.77 0.98 1.03  37 179.49 0.92 0.95 
Q4 117 677.09 1.06 1.07  38 325.77 1.04 1.05 
Q5 (Highest) 127 1682.21 1.14 1.19  39 1079.55 1.12 1.24 

Group 
Sequence #2  Sequence #3 

N Fund Size ($mn) Tightness Weighted tightness  N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 26 52.48 0.92 0.93  17 84.64 0.91 0.87 
Q2 27 167.41 1.02 1.01  19 214.72 0.98 1.02 
Q3 28 270.92 1.05 1.12  18 388.82 1.03 1.09 
Q4 27 507.83 1.13 1.18  19 571.20 1.04 1.04 
Q5 (Highest) 29 1288.28 1.17 1.12  20 1700.81 1.14 1.23 

Group 
Sequence #4 

 
Sequence #5 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 9 80.94 0.68 0.75  4 183.65 1.13 1.22 
Q2 9 223.86 0.89 0.90  5 261.20 0.91 1.05 
Q3 9 356.37 0.91 0.93  6 529.47 0.85 0.94 
Q4 9 528.30 0.95 1.04  5 749.60 1.06 1.03 
Q5 (Highest) 11 1605.20 1.18 1.19  7 1793.86 1.13 1.17 

Group 
Sequence #6 

 
Sequence >#6 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 3 140.57 0.58 0.48  12 221.08 0.79 0.75 
Q2 4 239.28 0.88 0.86  15 525.36 0.84 0.81 
Q3 4 528.75 1.20 1.08  15 847.96 1.00 1.03 
Q4 4 2588.60 0.97 1.01  15 1561.23 1.06 1.06 
Q5 (Highest) 5 4572.50 1.09 1.10  16 2942.85 1.11 1.22 
Table 5.A reports average market tightness of both Real Estate and Buyout  across fund size quintiles and fund sequence groups for the combined 
sample of real estate and buyout funds. Tightness is defined as the ratio of realized fund size to target size, with "Weighted tightness" representing 
fund size–weighted averages. Within each sequence group, funds are sorted into quintiles based on fund size, from Q1 (smallest) to Q5 (largest).  
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Table 5.B: Real Estate  tightness by sequence and fund size groups 

Group 
Overall 

 
Sequence #1 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 63 43.81 0.87 0.85  19 14.03 0.81 0.82 
Q2 68 107.39 0.94 0.89  20 39.55 0.97 0.94 
Q3 68 208.16 0.93 0.98  19 106.92 0.85 0.84 
Q4 68 346.67 1.03 1.04  20 224.94 1.04 1.08 
Q5 (Highest) 72 1031.74 1.14 1.17  20 540.36 1.11 1.08 

Group 
Sequence #2  Sequence #3 

N Fund Size ($mn) Tightness Weighted tightness  N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 11 88.43 0.95 0.95  10 34.14 1.02 0.99 
Q2 12 275.50 0.96 0.97  11 80.62 0.92 0.93 
Q3 12 425.80 1.18 1.19  10 174.26 0.94 0.95 
Q4 12 758.01 1.23 1.24  11 335.55 1.02 1.01 
Q5 (Highest) 13 1994.16 1.10 1.08  11 1255.76 1.16 1.27 

Group 
Sequence #4 

 
Sequence #5 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 5 30.04 0.73 0.68  3 38.20 1.09 1.12 
Q2 5 82.94 0.96 0.97  4 139.00 0.82 0.78 
Q3 5 154.06 0.86 0.87  4 230.50 0.78 0.79 
Q4 5 193.84 0.85 0.84  4 412.00 1.07 1.07 
Q5 (Highest) 6 1646.87 1.11 1.13  5 959.60 1.10 1.15 

Group 
Sequence #6 

 
Sequence >#6 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 2 97.20 0.72 0.72  9 144.56 0.83 0.82 
Q2 3 214.27 0.94 0.93  10 279.74 0.82 0.79 
Q3 3 476.67 1.40 1.32  11 434.76 0.98 0.99 
Q4 3 751.47 0.96 0.99  10 589.65 1.06 1.04 
Q5 (Highest) 3 1981.20 1.12 1.24  11 1600.51 1.05 1.11 
Table 5.B reports average market tightness of Real Estate across fund size quintiles and fund sequence groups for the combined sample of real estate 
and buyout funds. Tightness is defined as the ratio of realized fund size to target size, with "Weighted tightness" representing fund size–weighted 
averages. Within each sequence group, funds are sorted into quintiles based on fund size, from Q1 (smallest) to Q5 (largest).  
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Table 5.C: Buyouts  tightness by sequence and fund size groups 

Group 
Overall 

 
Sequence #1 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 44 131.31 0.80 0.82  17 54.70 0.78 0.79 
Q2 49 354.04 0.98 0.95  18 172.32 1.03 1.04 
Q3 49 577.33 1.06 1.06  18 256.08 1.01 1.01 
Q4 49 1135.63 1.10 1.08  18 437.80 1.04 1.03 
Q5 (Highest) 55 2533.75 1.14 1.21  19 1647.13 1.13 1.30 

Group 
Sequence #2  Sequence #3 

N Fund Size ($mn) Tightness Weighted tightness  N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 11 88.43 0.95 0.95  7 156.79 0.75 0.83 
Q2 12 275.50 0.96 0.97  8 399.10 1.06 1.05 
Q3 12 425.80 1.18 1.19  8 657.01 1.14 1.14 
Q4 12 758.01 1.23 1.24  8 895.23 1.07 1.06 
Q5 (Highest) 13 1994.16 1.10 1.08  9 2244.76 1.12 1.21 

Group 
Sequence #4 

 
Sequence #5 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 4 144.58 0.62 0.77  1 620.00 1.24 1.24 
Q2 4 400.00 0.80 0.88  1 750.00 1.25 1.25 
Q3 4 609.25 0.97 0.95  2 1127.40 1.00 1.00 
Q4 4 946.38 1.09 1.09  1 2100.00 1.00 1.00 
Q5 (Highest) 5 1555.20 1.25 1.26  2 3879.50 1.21 1.19 

Group 
Sequence #6 

 
Sequence >#6 

N Fund Size ($mn) Tightness Weighted tightness N Fund Size ($mn) Tightness Weighted tightness 
Q1 (Lowest) 1 227.30 0.28 0.28  3 450.67 0.68 0.67 
Q2 1 314.30 0.70 0.70  5 1016.60 0.88 0.81 
Q3 1 685.00 0.57 0.57  4 1984.25 1.04 1.06 
Q4 1 8100.00 1.01 1.01  5 3504.40 1.07 1.07 
Q5 (Highest) 2 8459.45 1.06 1.06  5 5896.00 1.24 1.29 
Table 5.C reports average market tightness of Buyouts across fund size quintiles and fund sequence groups for the combined sample of real estate and 
buyout funds. Tightness is defined as the ratio of realized fund size to target size, with "Weighted tightness" representing fund size–weighted averages. 
Within each sequence group, funds are sorted into quintiles based on fund size, from Q1 (smallest) to Q5 (largest).  
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Table 6.  Relationships between fund size and market tightness 
Panel A: Full sample 

VARIABLES (1) (2) (3) (4) (5) (6) 
       
Fund size 0.075*** 0.068*** 0.069*** 0.076*** 0.069*** 0.069*** 
 (0.009) (0.011) (0.012) (0.009) (0.011) (0.013) 
Lag_DR  0.004*** 0.003***  0.003*** 0.002** 
  (0.001) (0.001)  (0.001) (0.001) 
Ln(fund sequence) -0.054*** -0.083*** -0.070**    
 (0.018) (0.030) (0.031)    
Constant 0.628*** 0.701*** 0.698*** 0.598*** 0.660*** 0.651*** 
 (0.052) (0.068) (0.061) (0.054) (0.069) (0.066) 
       
Observations 585 374 374 585 374 374 
Adjusted R-squared 0.092 0.131 0.138 0.107 0.137 0.147 
Fund sequence number FE NO NO NO YES YES YES 
Vintage FE NO NO YES NO NO YES 

Panel B: Real Estate 
Fund size 0.072*** 0.069*** 0.076*** 0.069*** 0.064*** 0.068*** 
 (0.014) (0.016) (0.018) (0.014) (0.016) (0.019) 
Lag_DR  0.004*** 0.004***  0.003*** 0.003** 
  (0.001) (0.001)  (0.001) (0.001) 
Ln(fund sequence) -0.049* -0.076* -0.061    
 (0.025) (0.042) (0.045)    
Constant 0.662*** 0.717*** 0.658*** 0.645*** 0.711*** 0.655*** 
 (0.067) (0.086) (0.090) (0.070) (0.093) (0.098) 
       
Observations 339 221 221 339 221 221 
Adjusted R-squared 0.061 0.094 0.096 0.081 0.116 0.105 
Fund sequence number FE NO NO NO YES YES YES 
Vintage FE NO NO YES NO NO YES 

Panel C: Buyouts 
Fund size 0.113*** 0.125*** 0.107*** 0.118*** 0.128*** 0.118*** 
 (0.018) (0.022) (0.024) (0.018) (0.022) (0.024) 
Lag_DR  0.004*** 0.003**  0.004*** 0.003** 
  (0.001) (0.001)  (0.001) (0.002) 
Ln(fund sequence) -0.102*** -0.179*** -0.166***    
 (0.030) (0.048) (0.050)    
Constant 0.401*** 0.396*** 0.849*** 0.344*** 0.257* 0.669*** 
 (0.103) (0.121) (0.141) (0.108) (0.134) (0.156) 
       
Observations 246 153 153 246 153 153 
Adjusted R-squared 0.174 0.271 0.337 0.203 0.307 0.394 
Fund sequence number FE NO NO NO YES YES YES 
Vintage FE NO NO YES NO NO YES 
Note: Table 6 reports OLS regressions of market tightness on fund size, with controls for the lagged 
direct alpha of the same fund manager, fund sequence, and vintage fixed effects. Market tightness is 
measured by the ratio of realized to target fund size. Standard errors are clustered at the fund sequence 
level. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 
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Appendix 

Appendix A. Proof of Theorem 1 

To prove Theorem 1, we first take first order conditions of equation (4a) with respect to 𝑦: 

𝛼(𝑦) + 𝑦𝛼+(𝑦) +
(𝜓 − 𝜓+)

2 𝜎!# − ℎ+(𝑦) = 0 

Because &()'"()))
&)

> &()'!()))
&)

 and ℎ%+(𝑦) > 	ℎ$+(𝑦) for any 𝑖 > 𝑗, this implies 𝑦$∗ > 𝑦%∗. Higher type 

GPs gain larger fund size. 

Set 𝑓$(𝑦) = 𝑦𝛼$(𝑦) +
)(","#)

#
𝜎!#. Realized preference implies 𝑓$(𝑦$∗) − ℎ$(𝑦$∗) > 𝑓$(𝑦%∗) −

ℎ$:𝑦%∗;. Because 𝑓$(𝑦) > 𝑓%(𝑦) and ℎ$(𝑦) < ℎ%(𝑦) for any 𝑦, then 𝑓$:𝑦%∗; − ℎ$:𝑦%∗; > 𝑓%:𝑦%∗; −

ℎ%:𝑦%∗;. So, 𝑓$(𝑦$∗) − ℎ$(𝑦$∗) > 𝑓%:𝑦%∗; − ℎ%:𝑦%∗;. 

Now consider the first order condition with respect of 𝜃: 

𝜇+(𝜃) Y𝑦𝛼(𝑦) +
𝑦(𝜓 − 𝜓+)

2 𝜎!# − ℎ(𝑦)Z = 𝑘 

𝑓$(𝑦$∗) − ℎ$(𝑦$∗) > 𝑓%:𝑦%∗; − ℎ%:𝑦%∗; implies 𝜇+(𝜃$∗) < 𝜇+:𝜃%∗;. Since 𝜇(𝜃) is concave, 𝜇+(𝜃) is 

decreasing in 𝜃. This proves that 𝜃$∗ > 𝜃%∗ for any 𝑖 > 𝑗.  

Appendix B. Proof of Corollary 1 

Given the free entry condition, i.e. 𝜂(𝜃)𝑦 $𝜇! + 𝛼(𝑦) −
"#

#
𝜎!# − 𝜙( + :1 − 𝜂(𝜃);𝑦 $𝜇! −

"
#
𝜎!#( − 𝑘 = 𝑦 $𝜇! −

"
#
𝜎!#(, we can get 𝜂(𝜃)𝑦 $𝜇! + 𝛼(𝑦) −

"#

#
𝜎!# − 𝜙( + :−𝜂(𝜃);𝑦 $𝜇! −

"
#
𝜎!#( = 𝑘. Because 𝛼(𝑦) is decreasing in 𝑦 and concave, there exists a unique breakeven point 

of 0 < 𝑦E < ∞ such that such that 𝛼(𝑦E) = 𝜙. 

If 𝜓+ = 𝜓, 𝜂(𝜃)𝑦[𝛼(𝑦) − 𝜙] = 𝑘. Because 𝜂(𝜃), 𝑦, and 𝑘 are positive, 𝛼(𝑦) − 𝜙 must be 

positive, thus expected profits from PE investments must be larger than the one in public liquid 

markets.  

Appendix C. Proof of Corollary 2 
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Given the free entry condition, i.e. 𝜂(𝜃)𝑦 $𝛼(𝑦) + (","#)
#

𝜎!# − 𝜙( = 𝑘, and 𝜂(𝜃) decreases with  

𝜃, 𝜂(𝜃$∗) < 𝜂:𝜃%∗;, which implies 𝑦$∗ $𝛼$(𝑦$∗) +
(","#)

#
𝜎!# − 𝜙( > 𝑦%∗ $𝛼%:𝑦%∗; +

(","#)
#

𝜎!# − 𝜙(. 

The first order conditions of equation (4a) with respect to 𝑦 implies that 𝑦∗ is independent of 𝑘, 

𝜙, and 𝜃. From the free entry condition, we can prove that 𝜂(𝜃) increases with 𝑘 and 𝜙 but 

decreases with 𝛼(𝑦). Furthermore, if  𝜓 − 𝜓+ > 0, 𝜂(𝜃) decreases with  𝜓 − 𝜓+ and 𝜎!#. Because 

𝜂(𝜃) decreases with 𝜃, these imply that market tightness 𝜃 decreases with 𝑘 and 𝜙, but increases 

with excess return	𝛼(𝑦), 𝜓 − 𝜓+, and 𝜎!# if 𝜓 − 𝜓+ > 0.  

Appendix D. Proof of Theorem 2 

Although the incentive compatibility constraint for a type 𝑖 GP (𝑖 > 1) may become binding, 

there are cases where it remains non-binding, and the equilibrium coincides with that under full 

information. This occurs when managing a larger fund size, 𝑦$, is prohibitively costly for a 

lower-type GP. Specifically, when 

𝜇(𝜃$∗) Y𝑦$∗𝛼%(𝑦$∗) +
𝑦$∗(𝜓 − 𝜓+)

2 𝜎!# − ℎ%(𝑦$∗)Z − 𝑘𝜃$∗ ≤ 𝑈G% 

for all 𝑗	 ≤ 𝑖, the incentive constraint is not binding. The subsequent equilibrium analysis focuses 

on cases where this condition is violated, providing lower-type GPs with an incentive to deviate 

when contracts from the full information equilibrium are offered. 

To solve the equilibrium under adverse selections, we first start with the GP type 𝑖 = 1. For 𝑖 =

1, there is no lower type to exclude, thus 𝑦0 = 𝑦0∗ and 𝜃0 = 𝜃0∗. Then, we move forward with the 

GP type 𝑖 = 2. In addition to the maximation condition, we include the incentive capability 

constraint to disincentivize type 1 fund manager to apply for type 2 fund manager contracts. The 

maximization problem is expressed as 

𝑈# = 𝑚𝑎𝑥/1,	)1 	𝜇(𝜃#) Y𝑦#𝛼#(𝑦#) +
𝑦#(𝜓 − 𝜓+)

2 𝜎!# − ℎ#(𝑦#)Z − 𝑘𝜃# 
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s.t. 𝜇(𝜃#) $𝑦#𝛼0(𝑦#) +
)1(","#)

#
𝜎!# − ℎ0(𝑦#)( − 𝑘𝜃# ≤ 𝑈0∗ 

Type 2 GP problem can be expressed as 

(𝜃#, 	𝑦#) = 𝑚𝑎𝑥/1,	)1 	𝜇(𝜃#) Y𝑦#𝛼#(𝑦#) +
𝑦#(𝜓 − 𝜓+)

2 𝜎!# − ℎ#(𝑦#)Z − 𝑘𝜃#

− 𝜗 _𝜇(𝜃#) Y𝑦#𝛼0(𝑦#) +
𝑦#(𝜓 − 𝜓+)

2 𝜎!# − ℎ0(𝑦#)Z − 𝑘𝜃# − 𝑈0∗` 

Take the first order condition of 	𝑦#, we can get  

𝜇(𝜃#) Y𝛼#(𝑦#) + 𝑦#𝛼#+ (𝑦#) +
(𝜓 − 𝜓+)

2 𝜎!# − ℎ#+ (𝑦#)Z

− 𝜗 _𝜇(𝜃#) Y𝛼0(𝑦#) + 𝑦#𝛼0+(𝑦#) +
(𝜓 − 𝜓+)

2 𝜎!# − ℎ0+ (𝑦#)Z` = 0 

𝜗 =
a𝛼#(𝑦#) + 𝑦#𝛼#+ (𝑦#) +

(𝜓 − 𝜓+)
2 𝜎!# − ℎ#+ (𝑦#)b

a𝛼0(𝑦#) + 𝑦#𝛼0+ (𝑦#) +
(𝜓 − 𝜓+)

2 𝜎!# − ℎ0+ (𝑦#)b
 

Represent the contracts in the full information case as (𝑦$∗, 𝜃$∗). Then, at 𝑦#∗, the denominator of 𝜗 

is negative, so for 𝜗 to be positive, the numerator has to be negative too, which implies 𝑦# > 𝑦#∗. 

Also, because the denominator is more negative, this implies 𝜗 < 1. 

Now, turn to the first-order condition of 𝑦#, we get the following equation: 

𝜇+(𝜃#) Y𝑦#𝛼#(𝑦#) +
𝑦#(𝜓 − 𝜓+)

2 𝜎!# − ℎ#(𝑦#)Z − 𝑘

− 𝜗 _𝜇+(𝜃#) Y𝑦#𝛼0(𝑦#) +
𝑦#(𝜓 − 𝜓+)

2 𝜎!# − ℎ0(𝑦#)Z − 𝑘` = 0 

Which implies 
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𝜗 =
𝜇+(𝜃#) a𝑦#𝛼#(𝑦#) +

𝑦#(𝜓 − 𝜓+)
2 𝜎!# − ℎ#(𝑦#)b − 𝑘

𝜇+(𝜃#) a𝑦#𝛼0(𝑦#) +
𝑦#(𝜓 − 𝜓+)

2 𝜎!# − ℎ0(𝑦#)b − 𝑘
 

Given that 𝜇+(𝜃#) > 0, 𝑦#𝛼#(𝑦#) +
)1(","#)

#
𝜎!# − ℎ#(𝑦#) > 𝑦#𝛼0(𝑦#) +

)1A","#B
#

𝜎!# − ℎ0(𝑦#), 

𝑦#𝛼0(𝑦#) +
)1A","#B

#
𝜎!# − ℎ0(𝑦#) > 0, 𝑦#𝛼#(𝑦#) +

)1(","#)
#

𝜎!# − ℎ#(𝑦#) > 0, and 𝜗 < 0, 

𝜇+(𝜃#) $𝑦#𝛼#(𝑦#) +
)1(","#)

#
𝜎!# − ℎ#(𝑦#)( − 𝑘 must be negative, which implies that 𝜇+(𝜃#) <

𝜇+(𝜃#∗). Note that 𝜇+(𝜃#∗) $𝑦#∗𝛼#(𝑦#∗) +
)1∗(","#)

#
𝜎!# − ℎ#(𝑦#∗)( = 𝑘, which implies that 𝜇+(𝜃#) <

𝜇+(𝜃#∗). So, 𝜃# > 𝜃#∗. 


