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Abstract 

We investigate how pension fund networks influence private equity investment performance, and 

further explore the mechanisms behind network formation. Pension funds with access to parts of 

the overall network that others do not have (stronger networks) generate superior performance 

relative to pension funds that simply have more network connections or have connections with 

influential fund managers (weaker networks). Strong networking correlates positively with less 

fund manager lock-in and better first-time fund manager selection. Pension funds that target high 

expected returns, generate lower short-term returns, implement more aggressive performance 

benchmarking standards, require higher employee retirement contributions, and experience 

higher CEO and board turnover rates form weaker networks that impair their performance. Those 

pension funds get locked into the pre-existing GP networks, and a vicious cycle forms with weaker-

networked pension funds adopting riskier investment strategies that fail to perform well. This 

results in greater funding gaps that lead to more aggressive investment strategies. These effects 

are attenuated if pension funds link to well-connected consultants that improve access to better-

performing GPs. In contrast, pension funds that are well-connected across the whole network 

structure experience a more virtuous cycle that results in a more solvent fund.  

 
1 The authors gratefully acknowledge funding from the Real Estate Research Institute. We thank our two RERI 

mentors, Tom Arnold and John Worth, as well as Greg MacKinnon, for their very helpful insights and comments. 

Any shortcomings are ours and ours alone. 
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Good versus Bad Networking in  

Private Equity Pension Fund Investment  

 

 

Pension funds and Commercial Real Estate (CRE) have long and interactive relationships 

(Riddiough (2020)). Pension funds invest in CRE as part of their alternative strategy, and such an 

alternative strategy is called Private Equity Real Estate (PERE). The allocation to CRE by pension 

funds ranges from less than 1% to more than 15% (Preqin (2021)). PERE is becoming an 

increasingly crucial risky alternative as its allocation to it helps justify higher liability discount 

rates for pension funds to lower the present value of their liabilities (Andonov, Bauer, and Cremers 

(2017)), and it provides a “volatility veil” for pension funds (Riddiough (2020)). Pension funds 

follow the classical Private Equity (PE) investment structures2 and only have the right to decide 

whether to invest in a specific fund and the commitment amount. However, they are not involved 

in fund management, which General Partners (GPs) charge. This structure stresses the role of 

networks in fund selections and raises the research question: how do networks influence pension 

fund investment performance? What are the mechanisms behind network formation? 

We analyze pension fund network centrality through three distinctive dimensions. The first 

dimension is a degree measurement and simply counts the number of connected participants for 

each pension fund. The second dimension is a betweenness measurement which quantifies the 

extent to which one pension fund accesses the whole network structure. A higher value means 

pension funds access parts of networks that other participants do not have. The last network 

dimension quantifies how well pension funds connect to other influential participants and is called 

 
2 See Appendix for details. 
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eigenvector measurement. Three types of participants comprise the whole PERE network structure: 

i) pension funds, ii) GPs, and iii) consultants. We incorporate direct networks between pension 

funds and GPs, as well as indirect networking through consultants and explicitly distinguish 

pension fund networks from connected GPs’ and consultants’ networks.  

We introduce a novel instrument variable (pension fund asset value) to solve the endogeneity 

issue of networks. Both our OLS and 2SLS results show that pension funds’ network centralities 

have important and distinctive roles in pension fund performance. After controlling the connected 

GP and consultant network centralities, pension funds that connect to more or more influential 

participants experience worse performance (the results of “bad” networks). A one standard 

deviation increase in degree (eigenvector) centralities causes a 429 (566) basis point drop in their 

average performance; on the other hand, if pension funds have better access to the whole structure, 

and hence show a higher betweenness centrality score, their performance improves (the results of 

“good” networks). A one standard deviation increase in the betweenness centrality score results in 

a substantially 1107 basis points increase in average performance.  

GP and consultant positions in the network also play an important role in pension fund 

performance. Pension funds connecting to a GP with central positions in the network experience 

worse performance. A one standard deviation respective centrality increase worse pension fund 

performance by 193 to 234 basis point. Alternatively, consultants can improve pension fund 

performance by 127 to 458 basis points with one standard respective centrality increase.  

The distinctive role of networks in pension fund performance begs the question of what it 

implies to have a high centrality for pension funds and how it translates to performance. We 

analyze this issue by looking into the relationships between network centrality and fund manager 

selection. We build four novel switching rate indexes to capture different aspects of pension fund 
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and GP relations. It is found that pension funds with weaker networks are locked in their pre-

existing GP relations, experiencing lower switch rates and investing in pre-existing GP’s follow-

on funds which perform poorly. In contrast, pension funds with stronger networks move around 

the network more. We also find that pension funds with stronger networks hold more one-off 

investments that perform well, while pension funds with weaker networks experience worse one-

off investment performance. 

Why do pension fund network centralities have distinctive impacts on performance? We answer 

this question from both the back and front-end perspectives. The front end investigates why 

pension fund forms such network structures and what factors influence the three dimensions of 

networks. We examine three perspectives: asset growth rates, benchmark standards, and CEO and 

board of trustee turnover rates. The back end analyzes how networks affect pension fund 

investment strategies. From the front end, we find that high fund contributions, low short-term 

investment returns, and high expected returns adversely incentivize pension funds to form weaker 

networks. One standard deviation changes in each variable cause 292, 18, and 279 basis point 

return decreases, respectively. A pension fund with strong (median) benchmarks averages 779 

(424) basis points lower returns with better connections compared to when indexes are not 

identified. Turnovers of CEOs and the board of trustees lead pension funds to enter weaker 

networks. On the one hand, turnovers of CEOs cause pension funds to invest more (higher degree 

centralities) and this causes a 163-basis point return decrease. On the other hand, board of trustee 

turnovers lead to bad network formations and suppress good networks. One standard deviation 

increase in the turnover rates causes a 254-basis point decrease in returns. We then analyze the 

back end by exploring how networks influence pension fund risky investment behaviors. We find 
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that bad networks harm pension fund returns through increasing pension fund risky investment 

behaviors, which generates lower returns. 

Our paper contributes to several strands of documents in the literature. One strand focuses on 

LP and GP investment performance persistence. Kaplan and Schoar (2005) first empirically show 

that some GPs perform persistently better than others. Korteweg and Sorensen (2017) further 

confirmed GP persistence magnitudes by a variance decomposition method and Harris et al. (2020) 

re-examined the GP persistence based on GP previous fund performance known at the time of 

fundraising. As for LP performance persistence, using the MCMC method, Cavagnaro et al. (2019) 

find that some LPs consistently outperform, indicating LP persistence. They attribute such 

persistence to LP’s skill to identify and invest in scarce high-quality GPs. However, few studies 

have been done on the persistence puzzle. Maurin, Robinson, and Strömberg (2022) build a 

liquidity model to explain the persistence puzzle in LPs. They argue that LPs with higher tolerance 

to illiquidity realize better returns. Our paper contributes by providing an empirical explanation 

for LP performance persistence through a network channel. We find that LPs with strong networks 

persistently select well-performing funds. 

    The second strand of literature is about the underfunded issue of pension funds and how the 

underfunding status influences asset allocations. One possible channel is from the US GASB3 

regulations that require further contributions from underfunded pension funds. Andonov, Bauer, 

and Cremers (2017) find that pension funds act on this regulation. Pension funds are likely to be 

risk-taking to justify a higher expected return used to discount future liabilities. However, such an 

investment strategy can be dangerous and harmful to performance, especially for risk-averse 

managers (Bodnaruk and Simonov (2016)). Riddiough (2022) reconfirms the underfunding gaps 

 
3 Governmental Accounting Standards Board. 
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in pension funds and the underperformance of pension funds’ investments in two real estate risky 

asset classes, i.e., Value-add and Opportunistic funds. He provides another explanation why 

pension funds are prone to invest in risky assets when they are underfunded, that is, the “volatility 

veil” that Value-add and Opportunistic fund investment provides. This paper contributes by 

finding a vicious cycle of pension funds: when they are underfunded, they form weaker networks 

that lead to risky investments that perform poorly, adding to the underfunded status. 

The closest papers to ours are Hochberg, Ljungqvist, and Lu (2007), Krautz and Fuerst (2015), 

Rossi et al. (2018). Hochberg, Ljungqvist, and Lu (2007) show that better-networked VCs earn 

higher profits. Krautz and Fuerst (2015) analyze network roles in GP fundraising speeds and find 

that better-connected GPs can experience a more effortless and faster fundraising process. Finally, 

Rossi et al. (2018) find that networks help fund managers achieve higher risk-adjusted 

performance. In contrast to the above three papers, we focus on LPs and examine how pension 

fund networks influence their performance. We find distinctive roles of networks contrary to the 

homogenous effects. In addition, we are the first to solve the endogeneity issue of networks in PE 

by introducing a novel instrumental variable. 

I. Networks and the Role of Consultants 

Pension fund networks are complex and involve several participants, including pension funds, 

GPs, and consultants. The network establishment itself is an endogenous process (Matthew O. 

Jackson Brian W. Rogers and Zenou (2016)). Pension funds and other participants can form 

networks through former transactions or personal executive relationships. Due to data limitations 

and the non-public nature of private equity, it is common to back out networks by past transactions 

(Hochberg, Ljungqvist, and Lu (2007), Krautz and Fuerst (2015)). We build pension fund networks 
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based on the last 5-year transactions4 and cover all three types of participants. Networks between 

LPs and GPs formed by past transactions measure formal LPA contracts (transactional) instead of 

just knowing each other (relational). As we will illustrate in Figure 1, LP transactions proxy their 

position in networks, and the position in the whole network structure determines how central the 

LP is from different perspectives. In this sense, the network we are analyzing is not whether LPs 

know other LPs’ investments (the lead and follower model between LPs) but the LP’s formal 

positions in the network. 

Figure 1. ABOUT HERE 

Figure 1 illustrates a typical network structure of pension funds. We use a few actors as 

examples to represent and visualize the pension fund network structure without loss of generality. 

Networks are based on former transactions, and each line represents one investment. In the figure, 

there are seven pension funds (labeled as LPs), nine GPs, and one consultant (labeled as C). LP1 

has four investments: three direct investments in GP1, GP3, and GP4 and one indirect investment 

in GP2 through C1. LP2 has the largest GP investment numbers and invests in five GPs (GP4-GP8), 

while GP9 has the largest LP investments. The investments in GP9 by LP3 to LP7 do not implicate 

that LP3 to LP7 know each other when they make commitments5. Pension funds with similar 

features could invest in the same GPs. In Figure 1, LP1 and LP2 invest in GP4  may just because 

they have similar investment strategies but not because they share their investment information 

and invest in a specific GP. However, what is clear is that the positions of LP1 and LP2 in the 

network are different with LP1 standing between the left and right part of the network and LP2 

investing in the largest number of GPs. 

 
4 We get similar results when constructing networks based on the past 3-, 4-, 6-, 7-years transactions. See Appendix 

for details. 
5 Some pension funds do care whether there are other big or influential LPs investing in the same funds (the lead and 

follower model).   
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A. Network Measurements 

    Graph theory is applied to estimate how central the pension funds and other participants’ 

positions are in the whole network, and the key indicator is network centrality. We code pension 

funds investing in GPs’ one specific fund or employing a consultant to support as having a tie and 

weigh each tie by connection numbers. Again, we construct each year’s network matrices based 

on investments over a trailing 5-year window. We not only include pension funds closed-end fund 

investments but also incorporate open-end and separate account investments. This guarantees us 

full coverage of LP investments6.  

Figure 2 shows an example of network structures and ties in 2001. We highlight Blackstone 

Group (GP) in the figure. It is one of the largest GPs in 2001 and connects to many other market 

participants. It is located in the US but invests globally in multiple assets, including private equity, 

real estate, infrastructure, etc. By Q3, 2021, it has $ 684,000 Mn current assets under management 

with $208,000 Mn real estate assets (Preqin, 2021). Blackstone Group has a long history of 

investments dating back to 1985.  

Figure 2. ABOUT HERE 

Based on the graph theory, we construct three typical centrality measurements, i.e., degree 

centrality, betweenness centrality, and eigenvector centrality. Each measure provides one aspect 

of how central the participants are in the whole structure. 

Degree centrality measures how many market participants one pension fund connects to, an 

indicator of connection frequency. The more participants one pension fund links to, the higher the 

degree centrality is. Because we code connections based on former transactions, no matter whether 

pension funds invest in GPs directly or indirectly through consultants, one investment represents 

 
6 Our results are robust if we just build the network using closed-end funds. 
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one connection. Large pension funds generally invest more and thus have a higher degree centrality. 

In Figure 1, LP2 has 5 investments in 5 different GPs and ranks the highest in degree centrality. 

We further normalize the degree centrality as 0 to 1 by total actor numbers. So, the degree 

centrality implies the percentage of the total market participants one actor links to. Formally, we 

define the degree centrality as: 

                                                                    𝐷𝐶𝑖 =
𝑑𝑖𝑡

𝑁𝑡−1
                                                             (1) 

Where 𝑑𝑖𝑡 is the number of participants actor 𝑖 connects to in year t. 𝑁𝑡 is the total number of 

actors at time 𝑡. 

Betweenness centrality assesses the extent to which an actor lies on the shortest path between 

other participants. A higher betweenness centrality means the participants act as an intermediary 

that other actors rely on to make connections and are central to different kinds of information 

(Hochberg, Ljungqvist, and Lu (2007)). Figure 1 shows LP1 has the highest betweenness centrality. 

It has the access to LP2’s networks on the left and connects to LP3’s networks on the right. In 

contrast, LP2 and LP3 do not have direct access to each other’s network but only indirectly through 

LP1. Thus, betweenness centralities in this paper represent access to networks. A higher 

betweenness centrality means the participant has more access to networks that others do not 

directly connect to. The calculation of betweenness centrality can be expressed as: 

                                                                   𝐵𝐶𝑘𝑡 = ∑
𝜃𝑘(𝑖,𝑗)

𝜃(𝑖,𝑗)𝑖≠𝑗≠𝑘                                                  (2) 

where 𝐵𝐶𝑘𝑡 represents the betweenness centrality of participant 𝑘 in the year 𝑡. 𝜃𝑘(𝑖, 𝑗) is the 

number of shortest paths between participant 𝑖 and participant 𝑗 through pension fund 𝑘. 

𝜃(𝑖, 𝑗) is the number of shortest paths between participant 𝑖 and participant 𝑗. This indicator 

is further normalized by (𝑁𝑡 − 1)(𝑁𝑡 − 2)/2. 
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Eigenvector centrality is an estimate of how participants connect to well-connected participants 

(Bonacich (1972)). In Figure 1, LP3 connects to GP9 who is invested by the other four LPs. Because 

GP9 is so influential and attracts the most pension funds, connecting to LP9 makes LP3 rank the 

highest eigenvector centrality. Analytically, the eigenvector centrality is calculated by the 

eigenvector equation as 

                                                                       𝐴𝑥 = 𝜆𝑥                                                              (3) 

 where 𝐴 is the adjacency matrix, 𝑥 is the relative centrality, and 𝜆 is the eigenvector centrality. 

More detailed analytical definitions and formulas of each centrality can be found in Bloch, Jackson, 

and Tebaldi (2021).  

B. The Role of Consultants 

TABLE I. ABOUT HERE 

Although consultants could play a discretionary role in the fund portfolio selection of some 

pension funds, they are mostly missing in private equity network analysis. Pension funds employ 

consultants extensively in their PERE investments. 5,943 out of 10,728 investments are advised 

by consultants (See Table I for details). There are 145 consultants in our sample, each counseling 

an average of 40.986 investments. Public pension funds are more likely to use consultants in their 

PERE investments. There are 97 consultants involved in public pension funds’ investments. Each 

consultant’s average advised investment number is about 43.227; however, only 81 consultants 

participated in private pension funds’ investments, with each guiding about 21.605 investments. 

There is a vast variance (100.639) in the number of investments advised by each consultant at the 

investment level. Aon Hewitt investment consulting advised 675 investments, which is the largest. 

On the other hand, small constantans can advise as small as one PERE investment. There is high 

skewness of the advertised investments by consultants. The median of the advised investment 
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number by each consultant is only about 7.000, which is much lower than the average level 

(approximately 40.986). It indicates specific consultants are dominant and constitute a large share 

of the PERE consultant market. Pension funds stick to specific consultants over several years as 

the general term of consultant contracts is about 3 to 5 years. Incumbent consultants usually obtain 

the opportunity to rebid after the contract expires. At the pension fund level, each consultant’s 

average advised pension fund number is around 4.759. Each consultant’s average advised private 

pension fund number is about 3.407 compared to approximately 4.268 for public pension funds. 

This number also exhibits a massive variation in the number of advised pension funds by different 

consultants. Prominent consultants can sign contracts with more pension funds. For example, Aon 

Hewitt investment consulting guided 62 different pension funds. 

    Panel B of Table I shows five prominent consultants in the PERE investments7 in our sample. 

All five consultants have a long operation history, and the earliest firm launch date is 1972 

(Wilshire Associates). These five firms are all located in the US and rank in the first quarter of all 

three centrality measures. Aon Hewitt Investment consulting is the largest one with $ 4,200,000 

Mn assets under advisement as of Q3, 2021. Two of the five consultants report real estate asset 

values under advertisement. NEPC and Callan Associates have $11,5000Mn and $75,000 Mn RE 

assets under advisements8. 

 Pension funds issue requests for proposals from consultants. A final list usually contains about 

3 to 5 consultants, and the decision is generally made within two years. Consultants can provide 

either discretionary or non-discretionary consulting services to their clients as required. The 

discretionary service comprises fund selections and selling. In contrast, a non-discretionary service 

 
7 Consultants are ranked by advised investment numbers. 
8 Consultants advise a wide array of clients, including defined contribution pension plans, hedge funds managers, 

governmental entities, foundations, endowments, corporations, etc.  
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could include due diligence, which pension funds use to guarantee nothing important is missing in 

board meetings.  

II. Sample and Data 

    The data for our analysis is from Preqin and Public Plans Database (PPD). Preqin collects 

information on public and private funds based on the Freedom of Information Act (FOIA) and its 

relationships with GPs and LPs. PPD contains plan-level data from 2001 through 2020 for 200 

public pension plans covering about 95 percent of public pension membership and assets 

nationwide. About 85.50% of pension funds’ investments are covered in Preqin. The typical 

private equity real estate has a fund life of 10 years. Pension funds usually only have a role in 

selecting funds and deciding commitment amounts in the fund marketing stage, which is about one 

year, after which, pension funds can merely contribute commitments and receive distributes. They 

do not play a role in fund management, and GPs charge the administration.  

    Preqin starts to report funds’ net-of-fee internal rate of return (Net IRR) quarterly from the 

second year after the fund vintage. Vintage is the year when GPs start to call commitments or 

invest in projects. IRRs are calculated by cash flows generated by funds. Preqin reports the 

quarterly net-of-fee IRRs provided by GPs or pension funds. The reported performance in Preqin 

shares similar features as other main private equity data providers, Burgiss and Cambridge 

Associates, for example. Given that it is unlikely for the three data providers subject to the same 

bias, the IRR data in Preqin should be reliable (Harris, Jenkinson, and Kaplan (2014)). We close 

the sample at the end of 2015 to allow non-liquidated funds at least four years to realize stable 

IRRs. Q4, 2019 IRRs for each fund are used to exclude the COVID effects on fund performance9. 

 
9 Some funds do not report Q4, 2019 performance, and in those cases, we use the latest IRRs as funds’ returns. To 

address the concern that fund returns are not stabilized with a four-year fund life, we used Q4, 2022 updated returns 

as robustness tests. The newest funds will have at least 7-year life to realize performance. Results are robust.  
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Funds are usually composed of multiple investors, so pension funds who invest in the same funds 

share the same returns. We also run our IRR-based performance results using the net multiplex 

(TVPI). Results show high similarity. 

We concentrate our analysis on pension funds and exclude all other LP categories such as 

endowments and foundations. Analyzing different types of LPs’ network structures as a whole can 

be misleading because they present different network structures and apply heterogeneous 

investment strategies. We build pension fund networks with commingled (both closed and open-

ended) and separate account funds to cover all pension fund investments10.  The two typical PERE 

fund strategies are value-added and opportunistic, and they represent 69.98% of all funds with 

performance. The value-added strategy does moderate upgrading and enhancement to properties 

in primary and secondary markets, while the opportunistic strategy possesses lower-quality 

buildings and significantly enhances properties. Another main difference between value-added and 

opportunistic is the leverage level. Funds with opportunistic strategies (>60%) have higher 

leverage than value-added funds (50-70%) on average.  

We construct time-series consultant data with the combination of Preqin primary data, Preqin 

news, and PPD data. Preqin primary data provides cross-sectional consultant information for both 

private and public pension funds. However, pension funds change their consultants frequently. 

Preqin news gives us a way to assign each consultant to a specific year. The news shows when 

pension funds request a proposal from consultants, when it hires new consultants, and when the 

old consultants’ contract expires. PPD data is another source of consultant information. It reports 

yearly consultant information for each public pension fund from 2001. We only keep pension funds 

with zero or one consultant and delete all pension funds’ investment data with two or more 

 
10 Results are robust if we just use closed-end funds to build networks. 
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consultants to get the precise consultants11. The final data set contains 10,733 investments made 

by 1,443 pension funds with 577 public pension funds and 866 private pension funds. 

TABLE II. ABOUT HERE 

A. Pension Fund Investment Performance 

We estimate pension fund performance by net-of-fee IRRs. Net-of-fee IRRs are returns pension 

funds receive after management fees, carried interests, and catch-ups charged by GPs. A high 

gross-of-fee IRR does not guarantee a high net-of-fee IRR, especially when pension funds invest 

in funds managed by powerful GPs such as Blackstone Group. Blackstone Group can charge as 

high as 100% catch-up for returns after it pays the preferred returns to pension funds. The catch-

up is an additional fee on top of fees and standard carried interest and can largely reduce the return 

received by pension funds. Only closed-end funds report performance information in Preqin. Table 

II shows that the size-weighted average pension fund annual return is 8.656% with public pension 

funds earning a 7.553% average net-of-fee IRR and private pension funds’ return at 9.557%12. 

Public pension funds are more politically driven than private pension funds and focus more on 

non-pecuniary benefits (Barber, Morse, and Yasuda (2021) and Andonov, Kräussl, and Rauh 

(2021)). 

We further separate pension funds by the median investment number (three) and test whether 

there is a significant difference in IRRs between different pension fund investment numbers. As 

shown in Table II, there is about a 161-basis point difference in the IRRs. Surprisingly, pension 

funds with less than three investments earn slightly more than those with better investment 

 
11 8.60% (1010) investments are deleted.   
12  The returns here are averaged commitment weighted returns. We replace pension funds without commitment 

amounts for all its investments with unweighted returns. The unweighted returns are not reported in Table II but show 

similar results. The unweighted return of all investments is 9.449%, with 8.753% for public pension funds and 

10.018% for private pension funds.  
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experience. As a measure of pension fund experience, longer investment history could not 

guarantee a higher return.  

B. Pension Fund Investments and Expected Returns 

Large pension funds may perform differently from small pension funds. We use two size 

variables as controls to capture the size effects, i.e., pension fund asset values and commitment 

amounts. Pension fund assets include PERE investments and all other non-real estate investments, 

so it is a proxy of pension fund size. The pension fund asset level is only available for public 

pension funds and is obtained from PPD. Commitment amounts are the money invested in a 

specific fund by pension funds. Due to data limitations, there are only 4,488 out of all the 10,729 

investments with this data. Commitment amount shows significant heterogeneity, with less than 

$100,000 as the minimum and more than $2.8 billion as the maximum.  Asset levels among all the 

public pension funds also show a considerable variation. The smallest public pension funds only 

have $898 Mn assets under management, while the largest public pension funds manage more than 

$302.418 billion.  

With the PPD database, we can obtain yearly expected returns for public pension funds. Table 

II shows that pension funds expect to earn 7.851% annual returns between 2001 and 2019. We 

further report pension funds’ 1-year realized return and 5-year realized return. Pension funds earn 

lower returns than their expected returns in both 1-year (6.366%) and 5-year (6.308%) windows, 

i.e., 149 basis points and 154 basis points lower than the expected returns. 

C. Fund Level Performance and Characteristics 

This section reports the fund level performance and characteristics. Our sample has 1,126 

funds13 with performance data, with the average fund size at $695.157 Mn and 6.940% fund size-

 
13 Pension funds may invest in the same funds. The fund level data drop all the duplicated investments. 



 16 

weighted annual net-of-fee IRR. North America is the largest PERE market with 859 funds and 

gains higher fund returns (8.082%) than non-North America funds (4.771%). We also classify 

funds by their strategies into core/core+, value-added, opportunistic, and others14. Funds with other 

strategies earn more returns (8.319%) than opportunistic strategy funds (7.196%), which in turn 

gain more returns than value-added funds (6.825%) and Core/Core+ (3.731%). However, the 

unweighted fund returns show significantly different patterns from the weighted returns. This is 

consistent with Arnold, Ling, and Naranjo (2019). The unweighted results show that core/core+ 

funds have the highest returns (11.404%), followed by value-added (10.573%), and Opportunistic 

funds (8.190%). The fund sequence number by GPs is defined as the rank of each fund sorted by 

the fund vintage year in each GP. Funds with the same vintage year are sorted by their fund close 

date, and funds with an earlier one get a lower sequence number. The sequence number of funds 

by each GP is another measure of GP skills and experience and is important to control the sequence 

effects. The average fund sequence number in each GP is about 7.040. Details are reported in Table 

II. 

D. Pension Fund Networks 

From 2001-2015, PERE experienced a substantial variance in network centralities. Therefore, 

we calculate dynamic centralities for each pension fund. Over each five-year window, we do not 

distinguish connections with GPs or consultants in earlier or later years. We weigh connections by 

investment numbers and count each investment as a tie.  

Table II reports the results. Pension fund degree centrality averages about 0.4% across the 

sample periods, which means pension funds connected to an average of about 0.4% of actors in 

the networks over the sample periods. The results also show that consultants connect to 

 
14 Including debt, distressed and fund of funds, secondaries, etc. 
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approximately 4.6% of the participants. GPs have a relationship with 10.5% of other actors This 

is not surprising. PERE needs intensive capital, and GPs need to get enough commitments from 

multiple pension funds. The fundraising process is difficult for small GPs (Krautz and Fuerst 

(2015)). The magnitude of betweenness and eigenvector centrality do not have direct intuitions as 

degree centrality. Pension fund betweenness and eigenvector centralities are 0.10% and 0.9% on 

average, respectively.  

III. Networks and Pension Fund Performance 

Section I has described a typical pension fund network structure which includes three participant 

types: pension funds, GPs, and consultants. This section explores how pension fund networks 

influence performance with the control of GP and consultant networks that pension funds connect 

to. Specifically, within a pension fund, how the change in centralities would influence investment 

performance?  

A. The Basic Network Model 

𝐼𝑅𝑅𝑙,𝑔,𝑓 = 𝛼0 + 𝛼1 ∗ 𝐿𝑃 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1 + 𝛼2 ∗ 𝐺𝑃 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1 + 𝛼3 ∗

𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1 + 𝛼4 ∗ 𝑋𝑙 + 𝛼5 ∗ 𝑋𝑔 + 𝛼6 ∗ 𝑋𝑓 + 𝑉𝑖𝑛𝑡𝑎𝑔𝑒𝑓 + 𝐿𝑃𝑙 + 𝐺𝑃𝑔 +

𝜀𝑙,𝑔,𝑓                                                                                                                                               (4) 

where 𝐼𝑅𝑅𝑙,𝑔,𝑓 is the net-of-fee internal rate of return by pension fund 𝑙 that invests in fund 𝑓 

managed by GP firm 𝑔. We use the Q4, 2019 reported IRR as the pension fund performance. The 

fund’s vintage year is 𝑡. 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1 are weighted centrality indicators including degree, 

betweenness, and eigenvector centrality, of pension fund 𝑙 and are generated by the past five years’ 

transactions before the fund vintage year of 𝑡 . 𝐺𝑃 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1  and 

𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1 in equation (5) investigate whether investing in more central GPs’ 
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funds or following the advice of more central consultants would be a strategy for pension funds to 

gain higher returns. 

𝑋𝑙 is the vector of pension fund characteristics which include log(L. pension fund asset value),  

log(Pension fund commitment amounts), pension fund firm type (Public pension fund=1 and 

private pension fund=0), and pension fund investment sequence. Log(L. pension fund asset value) 

and log(Pension fund commitment) control size effects. Due to data limitation, pension fund assets 

are only available in public pension funds, and only about half of investments have log(pension 

fund commitment) available. Pension funds’ last investment Net IRR and pension fund investment 

sequence represent the pension fund’s skill and experience.  

𝑋𝑔 includes GP fund sequence number and whether GP is a public firm. The GP fund sequence 

number controls the GP's skills and fund sequencing effects.  

 𝑋𝑓 are fund characteristics. Variables include log(fund size), fund strategy, and fund primary 

location. Funds with different sizes, strategies, and locations could have different expected 

performances and risks.  

𝐿𝑃𝑙 and 𝐺𝑃𝑔  are pension fund and GP fixed effects, and are used to further control pension fund 

and GP skills and other time-invariant variables. We also include 𝑉𝑖𝑛𝑡𝑎𝑔𝑒𝑓 which is the vintage 

year fixed effects. It mitigates dynamic market influence. Funds with the same vintage year share 

similar features because they are exposed to common market conditions (Korteweg and Sorensen, 

2017). With the LP fixed effect, 𝛼1 should be interpreted as within effects. This avoids the size 

concern that large pension funds have higher centralities, especially degree centralities in their 

nature. 

TABLE III ABOUT HERE 
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Table III reports the results. Columns (1), (3), and (5) are results without pension fund 

commitment amounts, while columns (2), (4), and (6) include this variable. We find heterogeneous 

network roles in the performance. One standard deviation increases in degree and eigenvector 

centrality within a pension fund relatively lower average returns by 7.482 to 12.675 percent. Those 

amounts to 72 basis points to 121 basis points decrease in returns based on the average fund returns 

in Table II. The negative effects indicate pension funds that diversely connect to many GPs through 

investments or invest in influential GPs’ funds potentially get a lower return. The betweenness 

centrality results are contrary to those in degree and eigenvector centrality. One standard deviation 

increase in betweenness centrality causes a relative 9.341 to 12.408 percent increase in average 

performance, which equals a 90 to 118 basis points increase in returns. A higher betweenness 

centrality means more access to networks and benefits pension funds in gaining higher returns. GP 

and consultant centralities are mostly insignificant. 

Table III also shows that when a GP turns public, its fund performance will drop significantly. 

Immediately after GPs turn public, the return reduces by about 5%-6% on average.  

B. Endogeneity and the Instrumental Variable 

Hochberg, Ljungqvist, and Lu (2007) argue that reverse causality between networks and 

performance should not be a concern. Networks are constructed based on past transactions before 

fund vintage years, and fund returns are realized years later. Thus, there is at least a five-year 

spread between networks and fund performance. However, this argument ignores the possibility 

that pension funds may network with other market participants now to achieve higher returns in 

the future. Such expectation effects are ignored in Equation (4) and can potentially cause 

endogeneity issues. Another source of endogeneity comes from network persistence. The current 

network may persist until the time when funds realize returns. If this happens, even though we 

used lagged 5-year transactions to build network centralities, the network structure may be quite 
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similar to the one when returns are realized. We call this the persistence effect. These two effects 

require instrumental variables to get an unbiased estimate of network effects.15 

We first include expected returns at the pension fund level to address the expectation effects. 

Two variables are used from PPD, i.e., pension fund assumed returns and 5-year investment returns. 

Pension fund assumed returns are expected returns, and 5-year investment returns are the mean 

investment returns over the past five years. These two variables capture pension fund-level 

expectations. However, public pension funds might have different expected returns for each fund 

they invest in. Furthermore, it still does not address the persistence effect.  

We introduce the lagged 5-year pension fund asset value as an instrument for the endogenous 

network variables. The lagged 5-year asset level is a size variable that can directly influence 

pension fund network structures. Because the PERE only represents about 5% of total asset values, 

and this variable is at least ten years before funds realize returns, it is unlikely to affect fund returns 

managed by GPs through error terms.  

TABLE IV ABOUT HERE 

By controlling the lagged pension fund asset value in regressions, we interpret the lagged 5-year 

asset level as changes in asset values. This means that conditional on a fixed one-year lagged asset 

value, a higher lagged 5-year asset level suggests a lower asset increment over the past four years. 

One concern with this instrument, however, is that the increment in assets over the past four years 

correlates to error terms in performance regressions. Especially, if asset values increase in 

expectation to achieve higher returns, then our instrumental variables would not be exogenous. To 

address this concern, we analyze where asset increment variations come, and whether it increases 

(or decreases) due to performance expectations. We use two variables to proxy for pension fund 

 
15 We further confirmed the endogeneity of the network variables by Hausman tests in Table V , and all results reject 

the exogeneity assumptions. 
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expectations: the reported assumed (expected) returns of pension funds and the pension fund 5-

year average return. Table IV treats geometric average asset growth16 over the lagged 5 to lagged 

1 year as the dependent variable and lagged six-year pension expected returns, payouts, and 

contributions as independent variables. Column (1) of Table IV only includes the L6. assumed 

(expected return); Column (2) only includes the L6. 5-year investment return; Column (3) includes 

both the L6. assumed (expected return) and the L6. 5-year investment return. We find that lagged 

expected returns (no matter proxied by assumed returns or 5-year investment returns) do not 

significantly influence asset growth in the following years. The primary asset growth sources are 

projected contribution rates and average benefits. Overall, the increment of asset growth is mainly 

due to contribution and payout factors (fund obligations) instead of expected return factors. Thus, 

the asset value of each pension fund does not enter performance terms and should be exogenous 

to the performance at least ten years later. Intuitionally, real estate funds are managed by GPs and 

are out of pension fund controls. Pension funds’ overall level asset changes could not influence 

the performance of GPs’ funds that are invested by many other pension funds if not through 

expectation effects. 

C. Two-stage Least Square Results 

Figure 3 ABOUT HERE 

    We carry out the Two-Stage Least Square (2SLS) regressions based on the instrumental variable. 

Figure 3 illustrates the empirical strategies. Take Fund A with the vintage year of 2015 for example 

and assume this fund gains pension fund B’s investment. We use Fund A' s return in Q4, 2019 as 

the performance and construct pension fund B’s networks by its previous transactions from 2009 

 
16 The geometric average asset growth rate is calculated by dividing the lagged 1-year asset value by the lagged 5-

year asset value, and then taking that ratio to the 1/4 power. 
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to 2014. Because most asset values are reported in the middle of each year, pension fund B’s asset 

value is then used in the middle of the year 2010 as the instrumental variable. With the control of 

the asset value in the middle of 2014, these two asset values measure the asset change between the 

middle of 2009 and 2014. The asset change overlaps with the network formation periods by four 

years, so it correlates with the network formation period.17 

Table V presents the 2SLS results. Columns (1), (3), and (5) are the results without the control 

of log(Pension fund commitment), while Columns (2), (4), and (6) are the ones with the 

commitment variables. Because some pension fund commitment variables are missing, the ones 

with this variable have fewer samples. All results are consistent with the OLS regressions but with 

more significance and larger influence magnitudes. Pension fund degree and eigenvector centrality 

significantly and negatively affect pension fund performance. One standard deviation increase in 

pension fund degree centrality causes a 39.570 to 46.622 percent relative decrease (429 to 493 

basis points) in average performance. One standard deviation increase in pension fund eigenvector 

centrality causes 52.202 to 63.102 percent relative decreases (566 to 667 basis points) in average 

returns. The betweenness centrality effect is even stronger in 2SLS. One standard deviation 

increase in pension fund betweenness centrality could bring 76.648 to 104.775 percent higher 

returns relatively. These amount to 831 to 1107 basis points. 

TABLE V ABOUT HERE 

The negative effect of GP centrality on pension fund returns still holds. One standard deviation 

increase in GP centrality would cause an 18.253 to 21.549 percent relative drop (193 to 234 basis 

points) in average performance. However, the consultant centrality influence is positive in all the 

 
17 Due to the data limitations, only public pension funds have such an instrumental variable. Thus, we can only 

solve the endogeneity issue with public pension funds. In unreported results, we re-run the OLS regressions to 

show our results are nonrandom with just the public pension funds.  
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2SLS regressions, and the effects are 10.881 to 43.308 percent relative increases (127 to 458 basis 

points) in pension fund average returns. This means that although most public pension funds use 

consultants, employing better-connected consultants benefits pension funds. 

In contrast to Hochberg, Ljungqvist, and Lu (2007), we find networks are not always “good” or 

“bad”. Having access to more networks is a good strategy because it has the shortest paths to all 

other participants (higher betweenness centrality). Pension funds may get enough information to 

distinguish which funds can generate higher returns in the future or distinguish good-performing 

GPs. However, if pension funds blindly connect to many participants, which increases the pension 

fund degree centrality, or they carelessly connect to other influential participants, the information 

is not well filtered. Such kinds of networks harm pension funds’ performance.  

Again, Hausman tests in Table V confirm the endogeneity issue. We further test validations of 

the instrumental variable. First, we perform the Kleibergen-Paap rk test, which is an under-

identification test. Then, we apply the weak identification test because weak instruments lead to 

severely biased estimates. Our results in Table V strongly reject the null hypothesis that our 

instrument variable is under-identified or weak. Finally, because the endogenous and instrumental 

variables are of the same size, there are no over-identification issues, and our regression is exactly 

identified. 

D. What do Networks Mean: Locking-in or Fickle?  

We found the distinctive roles of networks in performance. However, what are the implications 

behind a high network centrality? Do the worse performance of pension funds with a high degree 

and eigenvector centrality come from locking in bad relationships or because pension fund 

relationships with GPs are short-lived and pension funds are not skilled enough to find good GPs? 

In this part, we address this issue by building several novel switching rate indicators, and analyze 
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how networks relate to the pension fund switching rates among GPs and whether pension fund 

relationships with GPs are locked or short-lived. 

Based on whether funds are the first or last fund of a GP and whether the fund is the first and 

last investment by pension funds in the GP, we build up four switching indicators: the overall 

turnover or switch rate, the overall switch-in rate, the one-off fund investing rate, and the 

discretionary one-off investing rate (see Appendix for details). 18 The overall switch rate measures 

both the switch in and out rates. Those switch in and out could be discretionary and non-

discretionary. We define a discretionary switch when a GP still issues at least one follow-on fund, 

but pension funds decide not to invest in it; on the other hand, one could be non-discretionary or 

discretionary if a GP does not raise a follow-on fund. One-off fund investing is a one-time 

investment in a GP’s fund and is defined as discretionary when a GP continues to raise a follow-

on fund but the pension fund does not commit to it. 

TABLE VI ABOUT HERE 

With the control of pension fund firm fixed effect and fund year fixed effect, we report the 

results in Panel A to Panel C in Table VI. We find clear and strong lock-in effects instead of fickle 

relationships for pension funds with higher degree and eigenvector centrality. The relationships 

between degree (eigenvector) and overall switch rate (and switch-in rate) are significantly 

negative. A 0.1 increase in degree and eigenvector centralities could lead to a 1.66% to 34.96% 

decrease in the overall switch rate. In contrast, betweenness has a positive relationship with the 

overall switch rate. A 0.1 increase in betweenness leads to about a 22.68% to 28.58% increase in 

the switch rate. This implies pension funds that gain an increase in betweenness are those that 

move around the network more between. They are more likely to switch in and out to form new 

 
18 We also analyzed switch-out and other switching rates but all of them are not significant.  
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relationships with GPs. Combined with the good performance found in section C, it indicates that 

they are more skilled to select good GPs. This is further confirmed in Column (2). Pension funds 

with higher betweenness centralities are more likely to switch to new relationships while those 

with higher degree and eigenvector centralities are less likely to switch in. In this sense, pension 

funds with high degree and eigenvector centralities seem to be locked in the relationships with 

GPs and continue to invest in the follow-on funds of the GP and then experience worse 

performance.   

Columns (3) and (4) of Panel A to C in Table VI report the one-off fund investing rate and the 

discretionary one-off investing rate. Both degree and betweenness centralities are significantly 

positively correlated with the one-off fund investing rate but the eigenvector does not have a 

significant influence. Pension funds with a higher degree and betweenness form more one-time 

relationships. Given pension funds with high betweenness have better performance, one would 

suspect that pension funds with a higher betweenness are better at selecting good performance 

funds than those with a higher degree centrality. To formally test this assumption, we regress the 

pension fund investment performance of those one-off investments on the spread between 

betweenness and degree (eigenvector) of a pension fund with the control of vintage, fund size, and 

year fixed effects. We first normalize pension fund three centrality measurements by mean and 

standard deviation before getting the spread. Panel D of Table VI shows the results.  Column (1) 

and (4) only includes the vintage year fixed effects; Columns (2) and (5) add the strategy fixed 

effects; Columns (3) and (6) further add the log (fund size). In all the settings, we find that the 

spread between betweenness and degree centralities of a pension fund has a significantly positive 

effect on the selected one-off fund performance at the 5% significance level, while the influence 
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of the spread between betweenness and eigenvector centralities also has a significantly positive 

influence on the performance but at a lower level. 

E. Robustness Tests 

    We carry out several robustness tests to address concerns about our results. The first concern is 

that our consultant data is based on news, and we might not collect all the consultants employed 

by pension funds. However, our public pension funds’ consultants mostly come from PPD, and 

this provides us a complete consultant data, at least for public pension funds. In addition, we re-

run all the regressions with vintage years starting in 2006. The main assumption is that the more 

recent consultant information should be more reliable and complete. The results remain robust.  

    The second concern is that we build network centralities based on a 5-year window. But 

networks may be less or more persistent. Therefore, we build network centralities with a 3-year, 

4-year, 6-year, and 7-year transaction window to alleviate this concern. The results remain robust 

(See Appendix for details). 

The third concern is that adding 𝐺𝑃 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1 and 𝐶𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1 to 

the model reduces our sample size. Furthermore, pension funds, GPs, and consultants without past 

transactions will not appear in the sample as we construct networks by past five years’ transactions. 

Thus, the results may be generated by small samples. To alleviate this concern, we first run all the 

models without these two variables, and the estimation for 𝐿𝑃 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑙,𝑡−5:𝑡−1 remains robust 

(See Appendix for details). We then run a separate set of results by replacing the first-time network 

centrality of pension funds, GPs, and consultants with zero (the minimum value). Our results 

remain robust (See Appendix for details).  

The fourth concerns are the performance measurements. One is that we use IRR as our 

performance measurement with TVPI as a replacement. These are absolute returns instead of 
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benchmarked returns. However, benchmark methods, including the PME benchmark methods 

(Index Comparison Method-PME by Long and Nickels (1996)), the PME plus (PME+) method by 

Rouvinez (2003), KS-PME by Kaplan and Schoar (2005), the modified PME (mPME) method by 

Cambridge Associates (2013), the direct alpha method by Gredil, Griffiths, and Stucke (2014), and 

the GPME by Korteweg and Nagel (2016)) or standard asset pricing specifications (Gupta and Van 

Nieuwerburgh (2021)), all require cash flow data which is highly missing. The focus on PERE and 

the control of vintage fixed effects partially solves this issue. PEREs have relatively homogenous 

fundamentals, i.e., real estate, and thus are exposed to relatively similar markets. Another concern 

is that our newest fund performance data is only based on four-year performance after the vintage. 

GPs have incentives to manipulate fund performance by changing the net asset values (Brown, 

Gredil, and Kaplan (2019), Jackson, Ling, and Naranjo (2022)). We re-run all the results with the 

updated Q4, 2022 performance. This allows at least 7 years for funds to realize returns. Because 

funds have an average life of 10 years, performance closer to 10 years is more reliable. Again, all 

results are robust (See Appendix for details).  

The final concern is whether each centrality measurement captures the other two centrality 

components. For example, although the degree centrality has a clear meaning of frequency, it still 

correlates with betweenness and eigenvector centralities. We solve this issue by regressing each 

centrality on the other two types by controlling the year-fixed effects. We use the regression 

residues as the value for each centrality, which eliminates the overlapping effects. The results are 

consistent with our main results (See Appendix for details). 

IV. Mechanisms: Network Formation and Risky Investment 

    This section analyzes the mechanisms behind network effects on performance by investigating 

what leads to good (bad) network formations (the front end), and how networks influence pension 
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fund behaviors, especially risky investment behaviors (the back end). We analyze network 

formations through three channels: asset growth components, benchmark standards, and CEO and 

board of trustee turnover rates. The back end is investigated by whether pension funds increase 

their risky investment behaviors.  

IV.I. Front End: Network Formation 

A. Asset Growth Rates 

    The first stage of the 2SLS model (Table V) shows that at the investment level, a faster asset 

growth rate over the past four years (lower lagged five-year asset values) causes increases in degree 

and eigenvector centrality but a decrease in betweenness centrality. The higher degree and 

eigenvector centralities in turn harm pension fund returns, while betweenness centralities help 

increase pension fund returns. In this section, we decompose asset growth components. Because 

these asset growth components are fund sources for investments based on which we build networks, 

we run the regressions with network centralities as dependent variables and lagged six-year asset 

growth components as independent variables to investigate how networks form.  

The annual asset growth into its components: 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑎𝑠𝑠𝑒𝑡 𝑔𝑟𝑜𝑤𝑡ℎ =  𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 −

 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠 +  𝑃𝑒𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 −  𝑃𝑒𝑛𝑠𝑖𝑜𝑛 𝑝𝑎𝑦𝑜𝑢𝑡𝑠 −

 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠 −  𝑂𝑡ℎ𝑒𝑟 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠/𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠                                                              (6) 

TABLE VII ABOUT HERE 

Results are shown in Table VII. We also add expected returns, 1-year investment returns, and 

5-year investment returns in the regression to control expectation effects. Regressions are weighted 

by investment numbers at the pension fund level. Results without these variables are largely similar. 

We find that contribution is the main source for the increase in degree and eigenvector centralities. 
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When pension funds contribute more, they form more bad networks. One standard deviation 

increase in pension contribution leads to 0.003 and 0.077 increases in degree and eigenvector 

centralities, which in turn reduces 0.773 % and 2.149% returns using coefficients in Table V with 

the control of commitment amounts. Those are a total of 292 basis point decrease in returns. 

However, contributions are not significant in betweenness centralities. A higher contribution does 

not mean pension funds can enter the right networks, and this further confirms good networks are 

not easy to build. 

Expected returns have a positive effect on bad networks but a negative effect on good networks. 

When pension funds are eager for a higher return, they end up in bad networks. One standard 

deviation increase in expected returns causes 0.001 and 0.030 increases in degree and eigenvector 

centralities and 0.0002 decreases in betweenness centralities, which in turn lead to a 279-basis 

point reduction in returns. Situations could be even worse if pension funds have a bad tracking 

record in the past 1-year returns. One standard deviation decrease in 1-year returns can lead to 

0.001 increases in degree centralities, which causes 18-basis point reductions in returns. 5-year 

return changes have homogenous effects on all kinds of networks. The overall effect is only 49-

basis point changes in returns with one standard deviation change. One thing to note is that 

although a better past 5-year performance led to stronger connections, it also blocks pension funds 

from accessing other participants, thus reducing network access (betweenness centralities). 

B. Benchmark Standards 

Pension fund benchmarks can influence pension fund investment behaviors. A stricter 

benchmark standard may make pension funds chase higher returns and enter bad networks. To test 

this assumption, we do a rough benchmark rating based on how strict the benchmark is. A stricter 

benchmark generally means a higher benchmark return over the same sample period. Based on the 

PPD data, we merge our investment data with the pension fund benchmark standard. The 
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benchmark ratings are mainly based on three indices: the NFI/ODCE index19, the private index, 

and the public index. Pension fund benchmarks are classified into 6 categories: 0-Positive 

allocation, but not index identified; 1-less than NPI/ODCE only (with or without CPI); 2- equal to 

NPI/ODCE only (within +/- 100 bps); 3- greater than NPI/ODCE only; 4- Combined public/private 

index; 5- Public index only; 6- Unspecified/Custom/Blended/Other. 

TABLE VIII ABOUT HERE 

We delete category 6 as they are unspecified and further classify categories 1-2 as median 

benchmarks and 3-5 as strong benchmarks. We leave category 0 as the base category. We lag six 

years for the benchmark rating as the benchmarks as independent variables and use network 

centrality as the dependent variable with the control of LP and vintage year fixed effects. As 

networks are formed over the past five years, the lagged six-year benchmark ratings are non-

overlapping with the network centralities. For our 2,312 matched investments, we have 904 

investments using the median strict standard, 479 investments using the strong benchmarks, and 

the remaining 929 investments using the base standards. Table VII reports the results. Pension 

funds with median benchmark ratings show a strong preference for bad networks with 0.004 higher 

degree centralities and 0.113 higher eigenvector centralities. This adds up to a 424-basis point 

lower returns based on the average returns. Pension funds with strong benchmarks are even worse. 

They have 0.006 higher degree centralities and 0.221 higher eigenvector centralities. This means 

779 basis points decrease in returns compared to pension funds with the base case (positive 

allocations, but not index identified).  

 
19 The NFI/ODCE index is the NCREIF fund index- Open End Diversified Core Equity. 
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C. CEO and Board of Trustee Turnover Rates 

Andonov, Hochberg, and Rauh (2018) analyzed how pension fund board of trustee 

representations influence fund performance. In this section, we analyze how CEO and board of 

trustee turnovers would influence networks. This analysis directly looks at how relational networks 

transit to transactional networks. 

 We hand-collected 1,338 CEO names and 14,492 board of trustee names of 111 public pension 

funds from 2001 and 2015. CEO turnover measures whether there is a CEO turnover before we 

form the networks. The board of trustee turnover rate is calculated as members left of the year 

divided by the average member numbers between the beginning. We run the network centralities 

on the lagged 6-year two turnover rates as the network centralities are built based on the past 5 

years’ transactions. CEO turnovers happen every 4.5 years, while the board of trustee turnover 

happens about 3-5 years with each member having different terms. 

TABLE IX ABOUT HERE 

Table IX shows the results. We found that higher board of trustee turnover rates lead to weaker 

networks. One standard deviation increase in the board of trustee turnover rates causes a 254-basis 

point decrease in pension fund returns (0.422% from degree, 1.276% from betweenness, and 0.841% 

from eigenvector). CEO turnover also has a bad influence on performance but mainly through 

degree centralities. New CEOs are more likely to start new investments, which causes a 163-basis 

point decrease in returns. CEO and trustee board member turnovers both negatively influence 

networks, which in turn harms performance. However, the mechanism behind is unknown, and we 

leave it for future study.  

IV.II. Back end: Risky Investments 

We further test what causes the negative or positive relationships between networks and 

performance by investigating how networks influence pension funds’ risk-taking behaviors. We 
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assume that pension funds may be misled by their networks to invest in risky assets. Because those 

assets are risky, the return may experience considerable variation, potentially harming pension 

funds’ performance. 

Different strategies in PERE possess heterogeneous risks in nature. We classify strategies into 

three types by strategies’ risk levels. The lowest risk level strategies include real estate debt funds 

and real estate core/core+ funds. Real estate core/core+ funds use relatively low risks and mainly 

invest in core assets. Real estate debt funds are loans secured by real estate, including B-note, 

CMBS, preferred equity, etc. The middle-risk level strategy is the value-added fund, and the 

highest-risk level funds are real estate opportunistic and real estate distressed funds. Value-added 

funds have lower leverage values and invest in lower-risk real estate than opportunistic funds. Real 

estate distressed funds invest in distressed properties. We label the lowest-risk level strategies, 

middle-risk strategies, and the highest risk level strategies as 1, 2, and 3, and use this variable as 

the dependent variable20.  

TABLE X ABOUT HERE 

Table X presents the results. When incorporating all three participants, we find that connecting 

to more or more influential participants enhances risk-taking behaviors. Combined with the 

unweighted poor performance of fund strategies in high-risk categories, weaker networks mislead 

pension funds into the wrong investments. Consultant centralities could help to reduce the risk-

taking in degree and eigenvector centralities. Having more access to the whole network structure 

(higher betweenness centrality) does not have a significant influence on risky investments.  

 

 

 
20 Real estate co-investment, fund of funds, and secondary funds cannot be clearly classified to specific risk levels 

and deleted in the regressions.  
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V. Conclusions 

In this paper, we investigate how pension fund networks in PERE influence their performance 

and explore the mechanisms behind network formation. We build pension fund networks through 

direct and indirect connections through consultants between pension funds and fund managers, 

and separately investigate pension funds’, fund managers’, and consultants’ networks. We find 

that networking plays an important and distinctive role in pension funds’ performance. It is 

essential for pension funds to form good networking. Private equity, by its nature, is not transparent. 

Therefore, it needs pension funds’ skills to access more networks, which helps distinguish good 

investment projects. Simply networking with more or more influential participants does harm 

pension funds’ performance. We further investigate the mechanisms of how networks influence 

performance from both the front and back ends. At the front end, we explore how networks form. 

At the back end, we examine how networks influence risk-taking. We find a dangerous trap in 

pension funds’ PERE investments: pension funds that target high expected returns, generate lower 

short-term returns, implement more aggressive performance benchmarking standards, require 

higher employee pension fund contributions, and experience higher CEO and board turnover rates 

form weaker networks that impair their performance. Pension funds with weak networks stick to 

the pre-existing GPs’ follow-on networks and are not good at selecting their one-off investments. 

The weak networks incentivize them to take more risks in investments that perform poorly. In 

contrast, pension funds with more access to networks switch among GPs and select good-

performing funds. We also confirmed the role of consultants in assisting pension funds to access 

good investments. 
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Figure 1. A typical network structure. 
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Figure 2. Network graph example: 2001 networks among pension funds, GPs, and 

consultants.  
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Figure 3. An empirical strategy example. 
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Table I 

Consultants 

The first panel in this table shows the summary statistics of consultants in investments and pension funds. The second panel shows the most used five consultants by LPs at the 

investment level. RE AUA in the table is real estate asset under advisements; AUA in the table is asset under advisements. Network centralities are ranked and classified into 

four different groups and the first quarter is the highest centrality group. 1st in the parentheses means the first quarter.  

 N Mean Std. Dev. Min Median Max 

       

Consultant 145      

Consultant advised investments 5943      

Advised investment by each consultant 145 40.986 100.639 1.000 7.000 675.000 

Advised public investment by each consultant 97 43.227 101.366 1.000 8.000 539.000 

Advised private investment by each consultant 81 21.605 36.794 1.000 5.000 164.000 

Advised pension funds by each consultant 145 4.759 9.154 1.000 2.000 62.000 

Advised public pension funds by each consultant 97 4.268 6.927 1.000 2.000 34.000 

Advised private pension funds by each consultant 81 3.407 5.130 1.000 1.000 33.000 

 Advised LPs 
Advised 

Investments 
Vintage Degree Betweenness Eigenvector Country 

RE AUA 
($ Mn) 

All AUA 
($ Mn) 

Wilshire Associates 25 387 1972 
0.170 

(1st) 

0.058 

(1st) 

0.154 

(1st) 
US - 1,100,000 

NEPC 47 425 1986 
0.144 

(1st) 

0.073 

(1st) 

0.056 

(1st) 
US 11,500 1,100,000 

Pension Consulting Alliance 10 416 1988 
0.191 

(1st) 

0.040 

(1st) 

0.595 

(1st) 
US - 1,374,000 

Callan Associates 39 560 1973 
0.235 

(1st) 

0.063 

(1st) 

0.354 

(1st) 
US 75,000 2,300,000 

Aon Hewitt Investment 

Consulting 
62 675 1974 

0.209 

(1st) 

0.094 

(1st) 

0.333 

(1st) 
US - 4,200,000 
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Table II 

Descriptive Statistics 

This table summarizes the variables used in the regressions. * means commitment amount value-weighted value. ** means fund size 

weighted value.  

 No. Mean Std. Dev. Min Median Max 

Pension fund investment number       

  All pension funds 1443 7.435 15.121 1.000 2.000 199.000 

  Public Pension Funds 577 10.726 20.560 1.000 3.000 199.000 

  Private Pension Funds 866 5.242 9.363 1.000 2.000 88.000 

Pension fund investment performance (as of q4, 2019) 

  All pension fund IRRs 827 8.656* 7.868* -27.200* 8.915* 62.000* 

  Public Pension Fund IRR 372 7.553* 7.077* -27.200* 7.753* 37.160* 
  Private Pension Fund IRR 455 9.557* 8.360* -17.270* 9.990* 62.000* 

  Pension funds with ≤ 3 investment IRR 350 9.583* 9.818* -27.200* 9.930* 62.000* 

  Pension funds with > 3 investment IRR 477 7.972* 5.973* -15.280* 8.342* 41.142* 

Other pension fund characteristics       

  Commitment amount ($Mn) 4488 74.021 134.870 0.010 40.000 2800.000 

  Investment sequence number by pension funds 10729 1.734 1.323 1.000 1.000 14.000 

  Pension fund asset values ($Billion) 1861 16.551 30.769 0.090 5.941 302.418 

  Assumed (Expected) return in percentage 1820 7.851 0.416 5.500 8.000 9.000 

  1-year return in percentage 1838 6.366 11.469 -30.850 9.100 38.605 

  5-year return in percentage 1672 6.308 3.953 -1.130 5.200 19.300 

Fund performance in percentage (as of q4, 2019) 

All fund IRR 1126 6.940** 12.227 -55.420 10.330 65.400 

North America IRR 859 8.082** 12.292 -55.420 10.600 65.400 

Non-North America IRR 267 4.771** 12.025 -23.660 9.310 62.000 

Core/ Core+ 111 3.731** 11.533 -39.900 10.200 63.200 

Value-added IRR 440 6.825** 13.337 -55.420 11.375 65.400 

Opportunistic IRR 348 7.196** 12.795 -54.700 9.800 53.120 

Others IRR 227 8.319** 8.725 -25.800 9.990 47.520 

Small fund (≤ median) IRR 548 10.133** 12.857 -55.420 11.000 65.400 

Large fund (> median) IRR 548 9.824** 11.410 -50.500 10.000 49.100 

Fund Characteristics       

  Fund size ($Mn) 1096 695.157 1134.170 7.500 400.735 15800.000 

  Fund sequence number by GPs 1126 7.040 8.367 1.000 4.000 62.000 

Network centrality       

Pension fund       

  Degree 

7665 

0.004 0.006 0.001 0.002 0.084 

  Betweenness 0.001 0.003 0.000 0.000 0.086 

  Eigenvector 0.009 0.044 0.000 0.001 0.914 

GP       

  Degree 

2859 

0.105 0.016 0.001 0.005 0.172 

  Betweenness 0.007 0.017 0.000 0.002 0.305 

  Eigenvector 0.019 0.043 0.000 0.005 1.000 

Consultant       

  Degree 

1519 

0.046 0.078 0.001 0.014 0.429 

  Betweenness 0.019 0.029 0.000 0.006 0.180 

  Eigenvector 0.039 0.143 0.000 0.005 1.000 
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Table III 

OLS Regression Results  

In this table, centrality is formed by transactions between GPs and LPs over a trailing 5-year window. The dependent variable is the net 

IRR. Centralities in Columns (1) and (2) are degree centralities; Centralities in Columns (3) and (4) are betweenness centralities;  

Centralities in Columns (5) and (6) are eigenvector centralities. Standard errors are clustered at the fund level and reported in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Dependent Variable: Net IRR Degree  Betweenness  Eigenvector 

(1) (2) (3) (4) (5) (6) 

         

Pension fund Centrality -0.802*** -0.826**  2.868** 3.331**  -0.045** -0.052** 
 (0.304) (0.347)  (1.196) (1.378)  (0.022) (0.022) 

GP Centrality -0.242 -0.353  0.068 -0.139  -0.126 -0.166 

 (0.346) (0.353)  (0.278) (0.334)  (0.132) (0.140) 

Consultant Centrality -0.009 -0.021  -0.004 -0.000  0.017** 0.019** 

 (0.029) (0.032)  (0.061) (0.071)  (0.008) (0.009) 

log(Pension fund commitment)  -0.000   -0.002   -0.000 

  (0.004)   (0.004)   (0.004) 

Pension fund firm type(Public pension fund=1) -0.019 0.060*  -0.011 0.066*  -0.014 0.039 

 (0.027) (0.036)  (0.028) (0.037)  (0.027) (0.036) 

Pension fund investment sequence 0.000 0.000  0.000 0.000  0.000 0.000 

 (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

GP fund sequence 0.004** 0.005**  0.004** 0.005***  0.004** 0.005*** 

 (0.002) (0.002)  (0.002) (0.002)  (0.002) (0.002) 

GP listed=1 -0.055* -0.049  -0.061** -0.055*  -0.059** -0.054* 

 (0.031) (0.031)  (0.030) (0.030)  (0.029) (0.029) 

log(Fund size) 0.001 0.002  0.001 0.002  0.001 0.002 

 (0.008) (0.008)  (0.008) (0.008)  (0.008) (0.008) 

Constant 0.157** 0.106  0.135** 0.080  0.152** 0.103 

 (0.068) (0.088)  (0.066) (0.083)  (0.066) (0.085) 

         

Observations 3,248 2,126  3,248 2,126  3,248 2,126 

Adjusted R-squared 0.605 0.612  0.606 0.613  0.605 0.612 

Pension fund firm FE YES YES  YES YES  YES YES 

GP firm FE YES YES  YES YES  YES YES 

Fund strategy FE YES YES  YES YES  YES YES 

Fund vintage FE YES YES  YES YES  YES YES 

Fund primary location FE YES YES  YES YES  YES YES 
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Table IV 

Exogeneity Test of Instruments 

This table shows the exogeneity test of instruments. The total contribution ratio is defined as total contributions over 

actuarial liabilities. The total deduction ratio is defined as total deductions over actuarial liabilities. Annual asset growth 

is the annual asset growth between lagged one and five years. All independent variables are lagged by six years. Robust 
standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Dependent Variable: Average annual asset growth (1) (2) (3) 

    

L6 Assumed (expected) return -1.302  -1.496 
 (2.860)  (2.996) 

L6. 5-year investment return  -0.178 -0.186 

  (0.170) (0.172) 

L6. total contribution ratio -0.164 -0.239 -0.265 

 (0.351) (0.363) (0.363) 

L6. net payout ratio 0.351* 0.415* 0.393* 

 (0.213) (0.212) (0.210) 

L6. projected contribution rate 0.548*** 0.554*** 0.542*** 

 (0.126) (0.128) (0.130) 

L6. average salary 0.002** 0.002** 0.001* 

 (0.001) (0.001) (0.001) 

L6. average benefit -0.009*** -0.011*** -0.011*** 

 (0.003) (0.003) (0.003) 

L6. total membership 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) 

Constant -0.200 -0.199*** -0.063 

 (0.253) (0.073) (0.257) 

    

Observations 899 810 804 

Adjusted R-squared 0.502 0.524 0.523 

LP firm FE YES YES YES 

Fund vintage FE YES YES YES 
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Table V 

2SLS Regression Results 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. In 2SLS regressions, 

the asset value from five years ago is used as the instrument variable. Only public pension funds data are used in this table due to data 

availability. Centralities in Columns (1) and (2) are degree centralities; Centralities in Columns (3) and (4) are betweenness 

centralities;  Centralities in Columns (5) and (6) are eigenvector centralities. Standard errors are clustered at the fund level and 

reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Dependent Variable: Net IRR Degree  Betweenness  Eigenvector 

(1) (2) (3) (4) (5) (6) 

         

Pension fund Centrality -3.115*** -2.713***  84.211*** 60.565**  -0.340*** -0.279*** 

 (0.893) (0.913)  (32.108) (25.304)  (0.104) (0.096) 

GP Centrality -0.817** -0.831**  -1.281** -1.303**  -0.122 -0.172 

 (0.373) (0.378)  (0.649) (0.607)  (0.131) (0.128) 

Consultant Centrality 0.125*** 0.109***  0.329*** 0.280***  0.121*** 0.101*** 

 (0.036) (0.039)  (0.124) (0.106)  (0.034) (0.032) 

log(Pension fund commitment)  0.003   -0.004   0.003 

  (0.004)   (0.005)   (0.004) 

Pension fund investment sequence 0.001 0.001  0.001 0.002  0.001 0.001 

 (0.001) (0.001)  (0.002) (0.002)  (0.001) (0.001) 

L. Pension fund asset values 0.261*** 0.243***  0.257*** 0.226***  0.272*** 0.258*** 

 (0.068) (0.056)  (0.067) (0.050)  (0.069) (0.059) 

L.Assumed (expected) return -1.737** -1.609**  -1.000 -1.057  -0.693 -0.845 

 (0.714) (0.798)  (0.874) (0.895)  (0.805) (0.861) 

L.1-year investment return 0.008 0.001  -0.137* -0.133*  0.004 -0.002 

 (0.024) (0.026)  (0.080) (0.073)  (0.027) (0.028) 

L.5-year investment return -0.147 -0.121  -0.052 -0.046  -0.157* -0.149* 

 (0.092) (0.093)  (0.141) (0.125)  (0.090) (0.089) 

GP fund sequence 0.003** 0.004**  0.003** 0.004**  0.004*** 0.004*** 

 (0.001) (0.001)  (0.002) (0.002)  (0.001) (0.001) 

GP listed=1 -0.030 -0.031  -0.046* -0.039  -0.045* -0.045* 

 (0.024) (0.024)  (0.027) (0.025)  (0.025) (0.024) 

log(Fund size) 0.026*** 0.026***  0.030*** 0.030***  0.025*** 0.025*** 

 (0.008) (0.007)  (0.009) (0.008)  (0.008) (0.007) 

Constant -0.221*** -0.252***  -0.257*** -0.231**  -0.414*** -0.403*** 

 (0.080) (0.085)  (0.096) (0.094)  (0.111) (0.115) 

         

Observations 1,619 1,450  1,619 1,450  1,619 1,450 

Adjusted R-squared 0.693 0.697  0.327 0.485  0.636 0.660 

Pension fund firm FE YES YES  YES YES  YES YES 

GP firm FE YES YES  YES YES  YES YES 

Fund strategy FE YES YES  YES YES  YES YES 

Fund vintage FE YES YES  YES YES  YES YES 

Fund primary location FE YES YES  YES YES  YES YES 

The first stage (Instrument): 

Pension fund asset value lag 5 years 

-0.056*** 

(0.009) 

-0.057*** 

(0.011) 

 0.002** 

(0.001) 

0.003** 

(0.001) 

 -0.514*** 

(0.132) 

-0.548*** 

(0.156) 

         

Hausman p-value 0.010 0.049  0.001 0.005  0.003 0.021 

Under identification test         

Kleibergen-Paap rk F statistic 81.966*** 89.584***  14.345*** 17.841***  73.988*** 79.050*** 
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Weak identification test         

Cragg-Donald Wald F statistic 228.702 319.097  17.743 22.059  184.078 179.046 

Kleibergen-Paap rk Wald F statistic 127.139 131.713  12.033 14.816  109.301 111.393 
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Panel D: Networks and Performance 

Dependent variable: Net IRR  

Betweenness-Degree 0.008** 0.008** 0.007**    

 (0.003) (0.003) (0.003)    
Betweenness-Eigen    0.004* 0.004* 0.004 

    (0.002) (0.002) (0.002) 

log(Fund size)   0.011   0.011 

   (0.008)   (0.008) 

Constant 0.009 0.005 -0.054 0.012 0.008 -0.054 

 (0.028) (0.034) (0.054) (0.028) (0.034) (0.054) 

       

Observations 1,534 1,534 1,526 1,534 1,534 1,526 

Adjusted R-squared 0.417 0.419 0.426 0.414 0.417 0.424 

Vintage FE YES YES YES YES YES YES 

Strategy FE YES YES YES YES YES YES 

Table VI Switching Rate and Network Centrality 

Panel A to Panel C reports the relationships between switching rates and three centralities. The dependent 

variables are switch rates. Panel D reports the regression results with Net IRR as the dependent variable and the 

spread of betweenness and degree (eigenvector) centralities as the independent variables. Robust standard errors 

are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

VARIABLES Overall switch 

rate 

Overall switch-

in rate 

One-off fund 

investing rate 

Discretionary 

one-off 

investing rate 

Panel A: Degree centrality 

Degree -3.496*** -1.649* 2.252*** 1.864** 

 (0.731) (0.857) (0.801) (0.774) 

Constant 0.973*** 0.816*** 0.084* 0.039 

 (0.035) (0.042) (0.044) (0.036) 

     

Observations 3,477 3,477 3,477 3,477 

Adjusted R-squared 0.458 0.446 0.572 0.565 

Pension fund firm FE YES YES YES YES 

Fund vintage FE YES YES YES YES 

Panel B: Betweenness centrality 

Betweenness 2.268*** 2.858*** 2.414** 2.426** 

 (0.873) (1.017) (1.103) (1.017) 

Constant 0.949*** 0.800*** 0.090** 0.042 

 (0.035) (0.043) (0.044) (0.036) 

     

Observations 3,477 3,477 3,477 3,477 

Adjusted R-squared 0.455 0.446 0.572 0.565 

Pension fund firm FE YES YES YES YES 

Fund vintage FE YES YES YES YES 

Panel C: Eigenvector centrality 

Eigen -0.166*** -0.108* -0.008 -0.030 

 (0.052) (0.060) (0.046) (0.043) 

Constant 0.954*** 0.806*** 0.096** 0.048 

 (0.034) (0.042) (0.044) (0.036) 

     

Observations 3,477 3,477 3,477 3,477 

Adjusted R-squared 0.455 0.446 0.572 0.564 

Pension fund firm FE YES YES YES YES 

Fund vintage FE YES YES YES YES 
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Table VII Network Formation: Asset Growth Rates 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. 

Independent variables are lagged by six years to be non-overlapping with centralities. Robust standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

VARIABLES Degree Betweenness Eigenvector 

(1) (2) (3) 

    

L6. expected return 0.241* -0.091*** 9.701*** 

 (0.126) (0.025) (1.833) 
L6. 1-year investment return -0.005*** -0.000 -0.043 

 (0.002) (0.001) (0.035) 

L6. 5-year investment return -0.028*** -0.005** -0.358*** 

 (0.005) (0.002) (0.107) 

L6. change in value of investment portfolio 0.003*** 0.000*** 0.024** 

 (0.000) (0.000) (0.011) 

L6. income, interests, and dividends -0.034*** 0.003* -1.024*** 

 (0.006) (0.001) (0.159) 

L6. investment expenses -0.171*** -0.005*** -0.876*** 

 (0.012) (0.002) (0.298) 

L6. pension contribution 0.019*** 0.000 0.514*** 

 (0.003) (0.001) (0.093) 
L6. pension payouts -0.036*** 0.002** -0.585*** 

 (0.007) (0.001) (0.158) 

L6. operating expenses 0.043*** 0.005 0.343** 

 (0.013) (0.003) (0.152) 

Constant -0.000 0.007*** -0.537*** 

 (0.010) (0.002) (0.144) 

    

Observations 2,086 2,086 2,086 

R-squared 0.893 0.694 0.623 

Pension fund firm FE YES YES YES 

Fund vintage FE YES YES YES 
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Table VIII Network Formation: Benchmarks 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. 

Pension fund benchmark ratings are classified into three categories, 0-Positive allocation but not index 

identified, moderate, and strong. 0-Positive allocation but not index identified is the base variable. All ratings 

are lagged by six years to be non-overlapping with centralities. Betweenness is in 1000s. Robust standard errors 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

VARIABLES Degree Betweenness Eigenvector 

(1) (2) (3) 

    

L6. Moderate Benchmark Rating 0.004*** -0.598* 0.113*** 
 (0.001) (0.319) (0.014) 

L6. Strong Benchmark Rating 0.006*** -0.079 0.221*** 

 (0.001) (0.149) (0.020) 

Constant 0.004*** 0.797** -0.015 

 (0.001) (0.350) (0.018) 

    

Observations 2,286 2,286 2,286 

R-squared 0.847 0.698 0.627 

Pension Fund firm FE YES YES YES 

Fund vintage FE YES YES YES 
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Table IX Network Formation: Turnover Rates 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. CEO 

turnover is a dummy variable and measures whether there is a CEO turnover. Board of trustee turnover rates measure 

the ratio of left members in a specific year. Both turnover rates are lagged by 6 years. Betweenness is in 1000s. 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

VARIABLES Degree Betweenness Eigenvector 

(1) (2) (3) 

    

L6. CEO turnover 0.006*** 0.238* 0.020 

 (0.001) (0.136) (0.019) 
L6. Board of Trustee turnover rate 0.010*** -1.356*** 0.194*** 

 (0.002) (0.287) (0.036) 

Constant 0.021*** 0.416*** -0.042** 

 (0.001) (0.121) (0.019) 

    

Observations 1,017 1,017 1,017 

R-squared 0.847 0.785 0.624 

Pension Fund firm FE YES YES YES 

Fund vintage FE YES YES YES 
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Table X Risk Investment Behavior 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. The dependent 

variable is the risk level of the investment ranked by fund strategies. Centralities in Columns (1) and (2) are degree centralities; 

Centralities in Columns (3) and (4) are betweenness centralities;  Centralities in Columns (5) and (6) are eigenvector centralities. 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Dependent Variable: Risk levels Degree  Betweenness  Eigenvector 

(1) (2)  (3) (4)  (5) (6) 

         

Pension fund Centrality 2.447** 3.374**  3.368 1.799  0.116* 0.230** 

 (1.204) (1.616)  (4.609) (5.798)  (0.070) (0.117) 

GP Centrality 2.309 3.620**  -0.584 0.542  0.615*** 0.571 

 (1.650) (1.817)  (0.595) (2.120)  (0.226) (0.838) 

Consultant Centrality 0.071 -0.357*  0.371 -0.635  0.022 -0.097* 

 (0.131) (0.184)  (0.390) (0.427)  (0.046) (0.059) 

log(L. Pension fund asset values)  -0.060**   -0.023   -0.037 

  (0.027)   (0.024)   (0.025) 

L. Assumed (expected) return  14.597**   14.785**   13.834** 

  (6.030)   (6.200)   (6.110) 

L.1-year investment return  -0.125   -0.108   -0.116 

  (0.337)   (0.326)   (0.325) 

L.5-year investment return  -1.649   -1.748   -1.628 

  (1.131)   (1.125)   (1.119) 

Constant 1.958*** 1.402**  2.028*** 1.394**  2.000*** 1.546** 

 (0.206) (0.653)  (0.123) (0.669)  (0.119) (0.631) 

         

Observations 4,039 1,965  4,039 1,965  4,039 1,965 

Adjusted R-squared 0.078 0.118  0.070 0.101  0.072 0.103 

Fund vintage FE YES YES  YES YES  YES YES 

Fund primary location FE YES YES  YES YES  YES YES 
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Appendix 

I. PE investment structure 

 
Appendix Figure A1: PE investment structure 

 

Figure A1 shows a typical pension fund investment structure. It includes two stages, i.e., GP 

marketing & pension fund commitment and GP investment & fund realization. The GP marketing 

& pension fund commitment stage lasts about one year. In this stage, 𝐺𝑃1, for example, markets 

its funds. Pension funds may either investigate the fund through in-house consultants 

(𝑃𝑒𝑛𝑠𝑠𝑖𝑜𝑛 𝑓𝑢𝑛𝑑1) or external consultants (𝑃𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑢𝑛𝑑2). If they decide on investments, they 

sign contracts with GPs about commitment amounts. The fund closes after the GP connects enough 

funds.  

The second stage usually lasts 10 years. In this stage, 𝐺𝑃1 invest as planned. Pension funds 

follow the contract and make committed contributions. If there are any fund realizations, 𝐺𝑃1 

distributes them back to pension funds. At the end of the fund life, 𝐺𝑃1 liquidates the fund and 

distributes the committed preferred returns. If there are any excess returns beyond the preferred 

returns and management fees (usually about 2%), GPs will get catch-ups if there are such 
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provisions. Catch-ups are the additional fees on top of management fees and carried interests. 

Carried interests are the standard promotions and are usually 20% of excess profits beyond 

preferred returns.  

II. Switching rate 

Consistent with the network, we build up pension fund switching rate based on the past five 

years’ transactions. In each year, we classify each investment by whether the fund is the first- or 

last-time fund for GP and whether it is the first or last time that the LP invests in this GP. Our 

ranking of the fund sequence in GPs and LPs are based on all the historical data between 1969 and 

2020. We close the sample period in 2020 to allow at least 5 years for GPs to raise another fund. 

We assume if GPs are not able to raise another fund in 5 years, then the GPs are out of the market. 

This is quite a long time given the typical time difference between two funds of a GP are just 2 to3 

years (Jackson, Ling, and Naranjo (2022)). Based on the fund sequence in LPs and GPs, we are 

able to analyze how pension funds switch between GPs. We classify pension switching to and 

from GPs into the following 9 categories. Each category is mutually exclusive and exhaust all of 

the possibilities. 

1. First time LP invests with GP, not the last time LP invests with GP, first GP fund, not the last GP 

fund (switch in), 

2. First time LP invests with GP, not the last time LP invests with GP, not the first GP fund, not the 

last GP fund (switch in) 

3. First and last time LP invests with GP, first GP fund, not the last GP fund (a one off that is 

discretionary, and qualifies as both switch in and switch out) 

4. First and last time LP invests with GP, first GP fund, last GP fund (a one off that may not be 

discretionary, and qualifies as both switch in and switch out) 
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5. First and last time LP invests with GP, not the first GP fund, not the last GP fund (a one off that is 

discretionary, and qualifies as both switch in and switch out) 

6. First and last time LP invests with GP, not the first GP fund, last GP fund (a one off that may not 

be discretionary, and qualifies as both switch in and switch out) 

7. Not the first time LP invests with GP, last time investing with GP, last GP fund (may or may not 

be a discretionary switch out) 

8. Not the first time LP invests with GP, last time investing with GP, not the last GP fund 

(discretionary switch out) 

9. Continuation fund – not the first time and not the last time LP invests with GP (not switch in and 

not switch out) 

Whenever the LP invests in a fund, the investment gets put into one of these nine different 

categories. Then, based on dollars committed or invested in the identified funds, we create 5-year 

lagged variables just the same as the measures of centrality. Below are different measures of 

switching rates. In each case the denominator is the sum of all investments made by the LP over 

the prior five-year period (that is, sum of 1 through 9 above): 

1. The overall turnover or switch rate: Sum of 1 through 8. 

2. The overall switch-in rate : Sum of 1 through 6. 

3. The one-off fund investing rate: Sum of 3 through 6 

4. The discretionary one-off investing rate: Sum of 3 and 5. 
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III. Robustness Tests 

A. Empirical results with networks formed by transactions over a trailing 3-year window 

 
Appendix Table A1：Results of Networks Formed by Transactions over A Trailing 3-year Window  

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 3-year window. Net IRR in 

Q4, 2019 is the dependent variable. The basic model does not include GP and consultant centrality, and the full model includes 

these two variables. Only key variables are reported, and other control variables are the same as the main context. Centralities 

in Columns (1) and (2) are degree centralities; Centralities in Columns (3) and (4) are betweenness centralities; Centralities in 

Columns (5) and (6) are eigenvector centralities. Standard errors are clustered at the fund level and reported in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1. 

  
Degree 

 
Betweenness 

 
Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Full Model 

Pension fund centrality -1.377*** -1.364***  0.719 2.257*  -0.065*** -0.067*** 

 (0.391) (0.450)  (0.849) (1.361)  (0.024) (0.025) 

GP centrality 0.175 0.286  -0.525 -0.452  -0.022 -0.009 

 (0.482) (0.546)  (0.416) (0.457)  (0.137) (0.141) 

Consultant centrality 0.013 0.016  0.022 0.062  0.020* 0.018 

 (0.030) (0.034)  (0.059) (0.065)  (0.010) (0.012) 

Observations 2,656 1,758  2,656 1,758  2,656 1,758 

Adjusted R-squared 0.650 0.658  0.648 0.656  0.647 0.656 

OLS-Basic Model 

Pension fund centrality -0.953*** -0.984***  0.361 0.644  -0.023 -0.029** 

 (0.277) (0.329)  (0.291) (0.425)  (0.014) (0.015) 

Observations 5,576 2,988  5,576 2,988  5,576 2,988 

Adjusted R-squared 0.619 0.648  0.618 0.646  0.618 0.646 

2SLS-Full Model 

Pension fund centrality -2.501*** -2.082**  68.546* 44.743  -0.261*** -0.202** 

 (0.837) (0.904)  (37.249) (30.750)  (0.086) (0.084) 

GP centrality 0.605 0.484  -0.484 -0.411  0.339** 0.263* 

 (0.449) (0.456)  (0.487) (0.482)  (0.158) (0.156) 

Consultant centrality 0.094** 0.085*  0.199** 0.196**  0.086*** 0.066** 

 (0.040) (0.045)  (0.090) (0.083)  (0.030) (0.029) 

Observations 1,353 1,214  1,456 1,302  1,353 1,214 

Adjusted R-squared 0.724 0.722  0.551 0.625  0.700 0.710 

2SLS-Basic Model 

Pension fund centrality -2.230*** -1.867***  46.331** 29.324  -0.154*** -0.120*** 

 (0.661) (0.692)  (23.465) (20.107)  (0.048) (0.046) 

Observations 2,044 1,807  2,226 1,961  2,044 1,817 

Adjusted R-squared 0.729 0.728  0.497 0.603  0.712 0.721 
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B. Empirical results with networks formed by transactions over a trailing 4-year window 

 
Appendix Table A2：Results of Networks Formed by Transactions over A Trailing 4-year Window  

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 3-year window. Consultant 

relationships are used in the formation of centrality. Net IRR in Q4, 2019 is the dependent variable. The basic model does 

not include GP and consultant centrality, and the full model includes these two variables. Only key variables are reported, 

and other control variables are the same as the main context. Centralities in Columns (1) and (2) are degree centralities; 

Centralities in Columns (3) and (4) are betweenness centralities; Centralities in Columns (5) and (6) are eigenvector 

centralities. Standard errors are clustered at the fund level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

  
Degree 

 
Betweenness 

 
Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Full Model 

Pension fund centrality -1.048*** -1.059***  3.399** 3.724**  -0.053** -0.055** 

 (0.338) (0.392)  (1.373) (1.555)  (0.022) (0.022) 

GP centrality -0.111 -0.164  -0.144 -0.643  -0.081 -0.088 

 (0.349) (0.387)  (0.429) (0.603)  (0.135) (0.143) 

Consultant centrality -0.001 -0.015  0.028 0.032  0.017** 0.015* 

 (0.028) (0.032)  (0.058) (0.065)  (0.008) (0.009) 

Observations 3,056 1,998  3,056 1,998  3,056 1,998 

Adjusted R-squared 0.612 0.626  0.614 0.630  0.610 0.625 

OLS-Basic Model 

Pension fund centrality -0.719*** -0.746**  0.652 0.908  -0.020 -0.025* 

 (0.261) (0.307)  (0.416) (0.652)  (0.014) (0.015) 

Observations 5,596 2,979  5,596 2,979  5,596 2,979 

Adjusted R-squared 0.618 0.652  0.618 0.651  0.617 0.651 

2SLS-Full Model 

Pension fund centrality -2.713*** -2.228***  44.157*** 33.108**  -0.271*** -0.210*** 

 (0.726) (0.739)  (16.972) (15.053)  (0.075) (0.070) 

GP centrality -0.419 -0.482  -0.926 -1.063*  -0.031 -0.092 

 (0.368) (0.381)  (0.645) (0.635)  (0.146) (0.145) 

Consultant centrality 0.075** 0.061*  0.177** 0.164**  0.090*** 0.070*** 

 (0.031) (0.033)  (0.081) (0.076)  (0.024) (0.023) 

Observations 1,716 1,525  1,854 1,641  1,716 1,525 

Adjusted R-squared 0.681 0.686  0.352 0.475  0.650 0.668 

2SLS-Basic Model 

Pension fund centrality -2.146*** -1.782***  29.147** 19.258  -0.174*** -0.135*** 

 (0.635) (0.652)  (13.354) (12.107)  (0.055) (0.051) 

Observations 2,056 1,813  2,245 1,974  2,056 1,823 

Adjusted R-squared 0.726 0.728  0.578 0.637  0.702 0.716 
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C. Empirical results with networks formed by transactions over a trailing 6-year window 

 
Appendix Table A3：Results of Networks Formed by Transactions over A Trailing 6-year Window  

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 3-year window. Consultant 

relationships are used in the formation of centrality. Net IRR in Q4, 2019 is the dependent variable. The basic model does not 

include GP and consultant centrality, and the full model includes these two variables. Only key variables are reported, and 

other control variables are the same as the main context. Centralities in Columns (1) and (2) are degree centralities; Centralities 

in Columns (3) and (4) are betweenness centralities; Centralities in Columns (5) and (6) are eigenvector centralities. Standard 

errors are clustered at the fund level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

  
Degree 

 
Betweenness 

 
Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Full Model 

Pension fund centrality -0.453 -0.454  2.633** 2.678**  -0.063*** -0.072*** 

 (0.288) (0.319)  (1.158) (1.333)  (0.021) (0.022) 

GP centrality -0.021 -0.184  0.115 -0.055  -0.202 -0.228 

 (0.343) (0.351)  (0.271) (0.326)  (0.166) (0.171) 

Consultant centrality -0.005 -0.029  0.042 0.032  0.022** 0.025*** 

 (0.028) (0.031)  (0.064) (0.075)  (0.009) (0.009) 

Observations 3,333 2,183  3,333 2,183  3,333 2,183 

Adjusted R-squared 0.618 0.624  0.622 0.627  0.622 0.629 

OLS-Basic Model 

Pension fund centrality -0.416 -0.481*  0.996 1.324  -0.025* -0.030** 

 (0.257) (0.282)  (0.656) (0.895)  (0.014) (0.015) 

Observations 5,489 2,918  5,489 2,918  5,489 2,918 

Adjusted R-squared 0.625 0.658  0.625 0.659  0.625 0.659 

2SLS-Full Model 

Pension fund centrality -4.287*** -3.637***  39.245 41.443*  -0.387*** -0.311*** 

 (1.284) (1.282)  (25.650) (25.073)  (0.128) (0.116) 

GP centrality -0.852** -0.851**  -2.268*** -2.373***  -0.017 -0.086 

 (0.365) (0.365)  (0.779) (0.838)  (0.156) (0.152) 

Consultant centrality 0.162*** 0.136***  0.284** 0.318**  0.130*** 0.106*** 

 (0.046) (0.048)  (0.142) (0.148)  (0.041) (0.038) 

Observations 1,677 1,494  1,493 1,342  1,677 1,494 

Adjusted R-squared 0.694 0.699  0.615 0.582  0.651 0.676 

2SLS-Basic Model 

Pension fund centrality -3.584*** -2.911***  44.677** 34.570**  -0.287*** -0.217** 

 (1.129) (1.109)  (17.691) (15.639)  (0.108) (0.091) 

Observations 2,066 1,821  2,066 1,821  2,066 1,831 

Adjusted R-squared 0.704 0.712  0.459 0.544  0.655 0.686 
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D. Empirical results with networks formed by transactions over a trailing 7-year window 

 
Appendix Table A4：Results of Networks Formed by Transactions over A Trailing 7-year Window  

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 7-year window. Consultant 

relationships are used in the formation of centrality. Net IRR in Q4, 2019 is the dependent variable. The basic model does not 

include GP and consultant centrality, and the full model includes these two variables. Only key variables are reported, and 

other control variables are the same as the main context. Centralities in Columns (1) and (2) are degree centralities; Centralities 

in Columns (3) and (4) are betweenness centralities; Centralities in Columns (5) and (6) are eigenvector centralities. Standard 

errors are clustered at the fund level and reported in parentheses.*** p<0.01, ** p<0.05, * p<0.1. 

  
Degree 

 
Betweenness 

 
Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Full Model 

Pension fund centrality -0.438 -0.351  3.096*** 2.636**  -0.055*** -0.062*** 

 (0.270) (0.299)  (1.149) (1.169)  (0.020) (0.020) 

GP centrality -0.599 -0.657*  -0.819 -1.163**  -0.322* -0.317* 

 (0.382) (0.379)  (0.573) (0.574)  (0.172) (0.175) 

Consultant centrality 0.000 -0.023  0.026 0.021  0.019** 0.023*** 

 (0.027) (0.029)  (0.067) (0.079)  (0.008) (0.009) 

Observations 3,365 2,202  3,365 2,202  3,365 2,202 

Adjusted R-squared 0.623 0.628  0.625 0.633  0.627 0.633 

OLS-Basic Model 

Pension fund centrality -0.430* -0.358  1.367** 1.357*  -0.031** -0.028** 

 (0.249) (0.261)  (0.605) (0.761)  (0.014) (0.014) 

Observations 5,414 2,878  5,414 2,878  5,414 2,878 

Adjusted R-squared 0.633 0.665  0.633 0.665  0.633 0.665 

2SLS-Full Model 

Pension fund centrality -7.087*** -5.751**  57.830** 51.444*  -0.437*** -0.326** 

 (2.452) (2.318)  (26.239) (28.035)  (0.152) (0.128) 

GP centrality -0.897** -0.889**  -0.713 -0.600  -0.089 -0.156 

 (0.396) (0.405)  (0.560) (0.555)  (0.160) (0.159) 

Consultant centrality 0.181*** 0.148***  0.370* 0.403*  0.146*** 0.113*** 

 (0.059) (0.056)  (0.200) (0.234)  (0.048) (0.041) 

Observations 2,090 1,838  2,090 1,838  2,090 1,838 

Adjusted R-squared 0.645 0.668  0.217 0.268  0.641 0.682 

2SLS-Basic Model 

Pension fund centrality -7.550*** -6.049**  59.111** 54.566*  -0.431** -0.324** 

 (2.797) (2.584)  (27.642) (30.856)  (0.188) (0.151) 

Observations 2,066 1,821  2,066 1,821  2,066 1,831 

Adjusted R-squared 0.615 0.648  0.195 0.212  0.559 0.625 
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E. Empirical results with first-time network centralities replaced by zero 

 
Appendix Table A5：Results of Networks with first-time network centralities replaced by zero 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window and the first-

time network centralities are replaced by zero. Consultant relationships are used in the formation of centrality. Net IRR in Q4, 

2019 is the dependent variable. The basic model does not include GP and consultant centrality, and the full model includes 

these two variables. Only key variables are reported, and other control variables are the same as the main context. Centralities 

in Columns (1) and (2) are degree centralities; Centralities in Columns (3) and (4) are betweenness centralities; Centralities in 

Columns (5) and (6) are eigenvector centralities. Standard errors are clustered at the fund level and reported in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1. 

  
Degree 

 
Betweenness 

 
Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Full Model 

Pension fund centrality -0.656** -0.663**  1.483** 1.874**  -0.046** -0.053*** 

 (0.272) (0.302)  (0.577) (0.737)  (0.019) (0.020) 

GP centrality -0.253 -0.361  0.095 -0.039  -0.187 -0.150 
 (0.321) (0.339)  (0.241) (0.285)  (0.120) (0.128) 

Consultant centrality 0.025 0.008  0.057 0.046  0.022*** 0.024*** 

 (0.023) (0.025)  (0.047) (0.056)  (0.008) (0.009) 

Observations 6,021 3,055  6,021 3,055  6,021 3,055 

Adjusted R-squared 0.619 0.652  0.619 0.652  0.621 0.653 

OLS-Basic Model 

Pension fund centrality -0.578** -0.620**  1.469** 1.847**  -0.015 -0.020 

 (0.264) (0.293)  (0.576) (0.737)  (0.015) (0.015) 

Observations 6,021 3,055  6,021 3,055  6,021 3,055 

Adjusted R-squared 0.619 0.651  0.619 0.652  0.618 0.650 

2SLS-Full Model 

Pension fund centrality -2.606*** -2.152***  38.669*** 31.124**  -0.272*** -0.206*** 

 (0.768) (0.774)  (13.616) (13.256)  (0.084) (0.075) 

GP centrality -0.734* -0.781*  -0.776 -0.867  -0.118 -0.172 

 (0.390) (0.405)  (0.574) (0.582)  (0.135) (0.136) 

Consultant centrality 0.093*** 0.078**  0.173** 0.161**  0.146*** 0.113*** 

 (0.032) (0.033)  (0.079) (0.080)  (0.048) (0.041) 

Observations 2,089 1,837  2,089 1,837  2,089 1,837 

Adjusted R-squared 0.724 0.728  0.528 0.581  0.696 0.714 

2SLS-Basic Model 

Pension fund centrality -2.621*** -2.160***  39.472*** 32.158**  -0.239*** -0.179** 

 (0.783) (0.790)  (14.003) (13.604)  (0.082) (0.070) 

Observations 2,089 1,837  2,089 1,837  2,089 1,847 

Adjusted R-squared 0.717 0.721  0.517 0.568  0.670 0.696 
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F. Empirical results with Q4, 2022 performance 

 
Appendix Table A6：Q4, 2022 Performance Results 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. Consultant 

relationships are used in the formation of centrality. Net IRR in Q4, 2022 is the dependent variable. The basic model does not 

include GP and consultant centrality, and the full model includes these two variables. Only key variables are reported, and 

other control variables are the same as the main context. Centralities in Columns (1) and (2) are degree centralities; Centralities 

in Columns (3) and (4) are betweenness centralities; Centralities in Columns (5) and (6) are eigenvector centralities. Standard 

errors are clustered at the fund level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 
 

Degree 
 

Betweenness 
 

Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Full Model 

Pension fund centrality -0.785** -0.879**  3.533*** 3.667***  -0.048** -0.048** 

 (0.325) (0.359)  (0.958) (1.119)  (0.023) (0.023) 

GP centrality 0.101 0.052  0.152 0.087  -0.059 -0.102 

 (0.112) (0.135)  (0.116) (0.145)  (0.054) (0.068) 

Consultant centrality 0.005 0.005  0.047 0.062  0.014 0.014 

 (0.028) (0.032)  (0.061) (0.073)  (0.009) (0.009) 

Observations 3,218 2,085  3,218 2,085  3,218 2,085 

Adjusted R-squared 0.614 0.627  0.618 0.630  0.613 0.626 

OLS-Basic Model 

Pension fund centrality -0.452* -0.445  1.279** 1.765**  -0.016 -0.017 

 (0.259) (0.308)  (0.552) (0.753)  (0.017) (0.017) 

Observations 5,216 2,780  5,216 2,780  5,216 2,780 

Adjusted R-squared 0.625 0.661  0.625 0.663  0.624 0.661 

2SLS-Full Model 

Pension fund centrality -2.951*** -3.368***  80.788** 77.853***  -0.318*** -0.346*** 

 (0.988) (0.991)  (33.785) (29.223)  (0.111) (0.105) 

GP centrality -0.491*** -0.419***  -1.269** -1.259**  -0.012 -0.066 

 (0.160) (0.160)  (0.505) (0.503)  (0.084) (0.091) 

Consultant centrality 0.155*** 0.163***  0.442*** 0.411***  0.114*** 0.128*** 

 (0.039) (0.041)  (0.136) (0.123)  (0.037) (0.036) 

Observations 1,584 1,413  1,584 1,413  1,584 1,413 

Adjusted R-squared 0.708 0.724  0.423 0.451  0.669 0.677 

2SLS-Basic Model 

Pension fund centrality -1.840** -2.226**  29.617* 35.199**  -0.168** -0.175** 

 (0.865) (0.879)  (15.118) (15.650)  (0.082) (0.072) 

Observations 2,027 1,773  2,027 1,773  2,027 1,773 

Adjusted R-squared 0.698 0.710  0.698 0.710  0.680 0.691 
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G. Empirical results with Q4, 2019 TVPI 

 
Appendix Table A7：Q4, 2019 TVPI Results 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. Consultant 

relationships are used in the formation of centrality. TVPI in Q4, 2019 is the dependent variable. The basic model does not 

include GP and consultant centrality, and the full model includes these two variables. Only key variables are reported, and 

other control variables are the same as the main context. Centralities in Columns (1) and (2) are degree centralities; Centralities 

in Columns (3) and (4) are betweenness centralities; Centralities in Columns (5) and (6) are eigenvector centralities. Standard 

errors are clustered at the fund level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

  
Degree 

 
Betweenness 

 
Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Full Model 

Pension fund centrality -1.934 -1.664  8.700** 11.088***  -0.145 -0.137 

 (1.332) (1.468)  (3.438) (4.093)  (0.096) (0.097) 

GP centrality -0.482 -0.453  0.547 0.650  -0.875*** -0.752*** 

 (0.518) (0.605)  (0.487) (0.564)  (0.252) (0.271) 

Consultant centrality 0.029 0.032  0.167 0.236  0.062* 0.051 

 (0.113) (0.126)  (0.251) (0.297)  (0.033) (0.035) 

Observations 2,735 1,788  2,735 1,788  2,735 1,788 

Adjusted R-squared 0.604 0.627  0.606 0.631  0.608 0.631 

OLS-Basic Model 

Pension fund centrality -2.158** -1.375  6.097*** 7.936***  -0.038 -0.045 

 (1.078) (1.268)  (1.818) (2.256)  (0.072) (0.075) 

Observations 4,654 2,448  4,654 2,448  4,654 2,448 

Adjusted R-squared 0.619 0.651  0.621 0.655  0.619 0.651 

2SLS-Full Model 

Pension fund centrality -10.323*** -9.892***  233.999** 182.834**  -1.158** -1.059** 

 (3.652) (3.542)  (94.149) (72.120)  (0.484) (0.435) 

GP centrality -3.561*** -3.431***  -2.767 -1.874  -1.165*** -1.186*** 

 (0.640) (0.631)  (1.778) (1.651)  (0.342) (0.332) 

Consultant centrality 0.451*** 0.416***  1.127*** 1.091***  0.357** 0.335** 

 (0.134) (0.138)  (0.412) (0.376)  (0.146) (0.134) 

Observations 1,335 1,199  1,335 1,199  1,335 1,199 

Adjusted R-squared 0.703 0.722  0.527 0.606  0.654 0.683 

2SLS-Basic Model 

Pension fund centrality -9.908*** -8.777***  141.123** 116.620**  -0.992** -0.760** 

 (3.397) (3.212)  (55.323) (47.436)  (0.453) (0.334) 

Observations 1,663 1,466  1,663 1,466  1,663 1,466 

Adjusted R-squared 0.722 0.740  0.579 0.622  0.671 0.711 
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H. Empirical results with non-overlapping centralities 

 
Appendix Table A8：Non-overlapping Centrality Results 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. Consultant 

relationships are used in the formation of centrality. Net IRR in Q4, 2019 is the dependent variable. All centralities are the 

residue values that regress one type of centralities on the other two types. The basic model does not include GP and consultant 

centrality, and the full model includes these two variables. Only key variables are reported, and other control variables are the 

same as the main context. Centralities in Columns (1) and (2) are degree centralities; Centralities in Columns (3) and (4) are 

betweenness centralities; Centralities in Columns (5) and (6) are eigenvector centralities. Standard errors are clustered at the 

fund level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

  
Degree 

 
Betweenness 

 
Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Full Model 

Pension fund centrality -0.357 -0.321  1.246** 1.746**  -0.013 -0.019 

 (0.248) (0.287)  (0.579) (0.758)  (0.020) (0.020) 

GP centrality -0.249 -0.131  0.673 0.558  0.032** 0.011 
 (0.170) (0.189)  (0.442) (0.573)  (0.015) (0.016) 

Consultant centrality -0.067 0.032  -0.165 -0.401  0.020 0.024 

 (0.199) (0.213)  (0.580) (0.804)  (0.018) (0.020) 

Observations 5,192 2,781  5,192 2,781  5,246 2,781 

Adjusted R-squared 0.620 0.653  0.621 0.656  0.620 0.653 

OLS-Basic Model 

Pension fund centrality -0.462* -0.325  1.499*** 1.840***  -0.002 -0.013 

 (0.239) (0.273)  (0.532) (0.690)  (0.018) (0.019) 

Observations 5,549 2,951  5,549 2,951  5,549 2,951 

Adjusted R-squared 0.621 0.653  0.622 0.655  0.620 0.653 

2SLS-Full Model 

Pension fund centrality -9.532** -11.821  16.628*** 15.045**  -0.520** -0.364** 

 (4.687) (8.080)  (5.450) (6.181)  (0.207) (0.144) 

GP centrality -0.200 -0.204  0.306 0.786  0.124*** 0.120*** 

 (0.375) (0.568)  (0.699) (0.699)  (0.033) (0.027) 

Consultant centrality 2.119** 2.847  -1.262 -1.463  0.264** 0.183** 

 (1.053) (1.916)  (0.892) (0.961)  (0.111) (0.078) 

Observations 1,961 1,728  1,961 1,728  1,961 1,728 

Adjusted R-squared 0.452 0.257  0.679 0.682  0.554 0.646 

2SLS-Basic Model 

Pension fund centrality -10.869* -17.386  16.375*** 14.789**  -0.435** -0.282** 

 (6.300) (17.591)  (5.554) (6.327)  (0.187) (0.126) 

Observations 2,063 1,818  2,063 1,818  2,063 1,818 

Adjusted R-squared 0.355 -0.332  0.683 0.686  0.579 0.664 
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I. Basic model results with networks formed by transactions over a trailing 5-year window 

 
Appendix Table A9：Basic Results with Networks Formed by Transactions over A Trailing 5-year Window 

In this table, centrality is formed by transactions between GPs and pension funds over a trailing 5-year window. Consultant 

relationships are used in the formation of centrality. Net IRR in Q4, 2019 is the dependent variable. All centralities are the 

residue values that regress one type of centralities on the other two types. The basic model does not include GP and consultant 

centrality, and the full model includes these two variables. Only key variables are reported, and other control variables are the 

same as the main context. Centralities in Columns (1) and (2) are degree centralities; Centralities in Columns (3) and (4) are 

betweenness centralities; Centralities in Columns (5) and (6) are eigenvector centralities. Standard errors are clustered at the 

fund level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

  
Degree 

 
Betweenness 

 
Eigenvector 

(1) (2) (3) (4) (5) (6) 

OLS-Basic Model 

Pension fund centrality -1.954** -1.688*  3.151*** 4.895***  -0.014 -0.073 

 (0.851) (1.005)  (1.185) (1.713)  (0.083) (0.090) 

Observations 3,867 2,052  3,867 2,052  3,865 2,051 

Adjusted R-squared 0.655 0.668  0.655 0.669  0.654 0.667 

2SLS-Basic Model 

Pension fund centrality -4.591*** -4.087**  160.163** 137.861**  -0.481** -0.406** 

 (1.752) (1.779)  (74.271) (69.673)  (0.190) (0.179) 

Observations 1,517 1,357  1,517 1,357  1,517 1,357 

Adjusted R-squared 0.714 0.722  0.570 0.615  0.709 0.720 

 

 


