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Abstract  

Machine learning (ML) algorithms that provide the analytical core of automated valuation models 

(AVMs) have demonstrated thus far unprecedented accuracy in the estimation of house prices, 

given an abundance of data recorded by multiple listing services and the development of 

increasingly sophisticated methods in recent years. Despite the vast potential that AVMs offer, 

their implementation in the institutional sector is progressing slowly as practitioners are reluctant 

to rely on these techniques. In contrast to the residential sector, little is known about the usefulness 

of such data-driven methods in commercial real estate markets where the availability of structured 

data is still very limited due to market intransparency and property heterogeneity. Moreover, the 

adoption of these techniques for institutional use is hampered as their mechanisms are black boxes 

in the sense that an inherent comprehensibility of their predictions is impeded by the complexity 

of their architectures. This is problematic as regulatory bodies and authorities require 

transparency. The objective of this study is to propose a holistic framework for the practical use 

of AMVs in a commercial real estate context that considers both the accuracy and interpretability 

of the estimation method. For this purpose, we train a deep neural network (DNN) on a unique 

sample of more than 400,000 property-quarter observations from the NCREIF Property Index 

(NPI) and perform model-agnostic analysis using “Shapley Additive exPlanations" (SHAP) to 

provide ex-post comprehensibility of the algorithm’s prediction rules. In doing so, we furthermore 

assess to which extent the inner workings of the DNN follow an economic rationale and set out 

how the proposed methods can add to the understanding of pricing processes in institutional 

investment markets. By addressing the caveats and illustrating the potential of ML in the field of 

commercial real estate, the contribution of this study represents another important pillar in the 

practical implementation of AVMs.  

 

Keywords: automated valuation models; commercial real estate; interpretable machine 

learning 
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BACKGROUND 

The estimation of real estate prices and identification of relevant price determinants in property 

markets remain a complex task due to the inherent heterogeneity of properties and the multiplicity 

of factors that influence their values. As stated by Quan and Quigley (1991), market mechanisms 

are obfuscated by “[…] a noisy signal, reflecting incomplete information as well as the conditions 

of sale”, given that real estate markets are illiquid, opaque, and individual agents in the market 

are only infrequently engaged in transactions. Appraisers are tasked with extracting important 

information (i.e., the signal) from irrelevant data (i.e., the noise) by using their expert knowledge 

about the market, which is justified by their individual experience from observing past 

transactions. Consequently, pricing processes must be disentangled based on limited information 

and subjective judgements of price determinants that a valuer considers relevant, resulting in 

imprecise and biased valuations (Dunse and Jones, 1998; Cannon and Cole, 2011). 

This gave rise to hedonic pricing models introduced by Rosen (1974) as the prevalent 

framework to analyze the mechanisms behind property pricing processes more objectively from 

an econometric point of view. Parametric hedonic models, such as proposed by Mills (1992), 

Sirmans and Guidry (1993), or Lockwood and Rutherford (1996), utilize linear regression 

methods to estimate property prices based on intrinsic property characteristics (e.g., location, size, 

amenities). Literature has demonstrated the efficiency and ease of interpretability of hedonic 

models in revealing relevant property price determinants. However, they are also built on strict 

assumptions which are unlikely to hold. In addition, the models require a fixed additive functional 

form between the property value and the explanatory variables that needs to be specified a-priori 

and entails a high risk of misspecification. As explained by Dunse and Jones (1998), hedonic 

prices may vary across space and time and can thus not be assumed to be constant. Other concerns 

refer mostly to the non-linearity of pricing processes that cannot be adequately captured with 

linear models. Studies by Grether and Mieszkowski (1974), Do and Grudnitski (1993), and 

Goodman and Thibodeau (1995) identify significant non-linearities between property prices and 

the building age as well as the square footage, demonstrating that complex relationships between 

property prices and features cannot be simply reduced to a single, invariant beta coefficient.  
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As data becomes more readily available and artificial intelligence (AI) continues to 

advance, both industry and academia have witnessed a shift towards the consideration of more 

adaptable machine learning (ML) techniques for determining property values. This shift has 

become evident in the form of automated valuation models (AVMs), which have gained 

importance in the sector, particularly in residential real estate, given the increased flexibility in 

the underlying models. In the literature, ML-based AVMs have repeatedly demonstrated a so far 

unprecedented level of accuracy in their predictions and do not require any judgement concerning 

the model’s functional form as they are designed to autonomously find complex non-linear 

relationships in the data and optimize model fit.  

Yet the adoption of ML in the industry in general, and the institutional sector in particular, 

is facing some critical issues. First, ML techniques are heavily data-dependent and therefore rely 

on large amounts of data to produce reliable and consistent results, as demonstrated by Worzala 

et al. (1995). In contrast to the residential domain, data availability is still limited in the 

commercial sector, which is particularly problematic due to the high heterogeneity of commercial 

property types (Deppner et al., 2023). Second, the models are criticized for lacking an economic 

justification and do not foresee any form of intrinsic interpretability (e.g., Din et al., 2001; 

McCluskey et al., 2013; Valier, 2020). This refers to the fact that these models are purely data-

driven, allowing them to make predictions from any combination of data (Rico-Juan and Taltavull 

de la Paz, 2021), while their complex and opaque architectures impede understanding of how the 

algorithm arrived at a particular valuation, and how the input factors have affected the outcome. 

This hampers comprehensibility of the models and prohibits to draw inference on price 

determinants, making it difficult for practitioners to trust and rely on AVMs, particularly given 

that regulators and authorities demand transparency in the process of estimating market values.  

The current state of research suggests three ways to address this problem. The first is to 

reduce the complexity of the applied models to such an extent that their interpretability is 

preserved. However, this makes the models more sensitive to changes in the data and increases 

the tendency of overfitting, resulting in poor out-of-sample performance (Kok et al., 2017; Pace 

and Hayunga, 2020; Lorenz et al., 2022). Second, ML can be used to provide constructive 
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criticism, such as in variable selection, model specification (e.g., Yoo et al., 2012; Perez-Rave et 

al. 2019), or model selection (e.g., Pace and Hayunga, 2020), which can help to improve upon 

traditional models. However, this means giving up the flexibility and accuracy of ML models for 

the sake of interpretability. The third alternative is to apply model-agnostic interpretation 

techniques that can decipher the black box of ML models, thus enabling post-hoc interpretability 

while maintaining accuracy and precision, as shown by Levantesi and Piscopo (2020), Rico-Juan 

and Taltavull de la Paz (2021), Lorenz et al. (2022) as well as Potrawa and Teterava (2022). 

The aim of this study is to expand upon this discussion by proposing a novel and 

comprehensive framework for utilizing AVMs in commercial real estate that balances both 

precision and comprehensibility. To achieve this, we train four deep neural networks (DNNs) on 

a large data sample comprising over 400,000 property-quarter observations from the asset sectors 

apartment, industrial, office, and retail, and apply model-agnostic analysis using “Shapley 

Additive exPlanations” (SHAP) to provide clear insight into the prediction rules of the algorithms. 

In doing so, we furthermore assess to which extent the inner workings of the DNNs follow 

economic principles and set out how the proposed methods can add to a deeper and more nuanced 

understanding of pricing mechanisms in institutional investment markets by revealing non-linear 

and three-dimensional relationships in the value drivers of commercial real estate.  

The contributions of the study are relevant and timely for both academia and practice for 

several reasons. While we do not believe that AVMs are developed to the point where they can 

substitute manual appraisers in the foreseeable future, the underlying technology still exhibits a 

high disruptive potential and is likely to reshape the multi-billion-dollar valuation industry in the 

years to come (Kok et al., 2017).  Especially in the commercial domain, where valuations are 

more complex and need to be executed frequently, these techniques can generate valuable insights 

to support data-driven decision-making, and thus leverage efficiency in both markets and business 

processes by increasing the speed and scale of valuations, reducing the cost of transactions, and 

ultimately increasing transparency in pricing processes. Market participants that incorporate such 

technologies into their business processes earlier than their competitors will be able to 

considerably streamline their processes and gain a competitive edge.  
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DATA 

The principal study data comprises quarterly, property-level observations of all properties 

included in the NCREIF Property Index (NPI) from the first quarter of 1978 to the first quarter of 

2021, provided by the National Council of Real Estate Investment Fiduciaries (NCREIF). The 

NPI is the oldest and most widely followed commercial real estate investment index in the United 

States and covers institutionally owned commercial real estate properties across the asset sectors 

apartment, hotel, industrial, office, and retail. The properties included in the index fluctuate over 

time as properties enter the database upon purchase and leave the database upon sale. This 

constitutes an initial unbalanced sample of 648,098 property-quarter observations across 30,254 

individual properties, for which we record the corresponding market values, a series of structural 

and physical attributes, as well as cash flows. Due to limited data availability, we exclude non-

operating properties and hotels from the initial sample. 

We account for missing and erroneous data as follows. Observations with market values, 

square footages and construction years reported as less than or equal to zero are regarded as data 

errors and are dropped. Likewise, observations with occupancy rates taking values below zero or 

higher than one are removed. Furthermore, observations with missing values for the square 

footage, the construction year, the occupancy rate, the net operating income (NOI), the capital 

expenditures (Capex), and the property subtype were omitted, as these represent the main 

explanatory variables from the raw NCREIF dataset. After scaling market values, NOI, and Capex 

by the property’s square footage, we note that remaining errors and anomalies in the data seem to 

be concentrated at the tails of the distribution of market values per square foot.  For this reason, 

we follow Calainho et al. (2022) and cut off the lower and upper percentile of the distribution for 

each property type. 

We subsequently enrich the cleaned data with a set of new variables. First, we calculate 

the building age as the difference between the valuation date and the construction date as well as 

the cumulative sum of a property’s capital expenditures scaled by square footage as a proxy for 

building quality. We also note that NOIs can fluctuate materially over the holding period and in 
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individual quarters. Since the average property in our sample has a five-year holding period, we 

use the eight-quarter moving average of the properties’ NOIs as a proxy for stabilized income. 

As demonstrated repeatedly in the literature, location is an important determinant of real 

estate values. We geocode our sample using the property addresses to retrieve the distances to 

relevant points of interest (POIs). Around 12.1% of the addresses could not be geocoded because 

of missing or incomplete addresses, so we drop those observations. For the remaining properties, 

we source a set of relevant POIs that are expected to cause either a premium or a discount to their 

surrounding area. For optimal data coverage, we use both Google Places and Open Street Maps 

(OSM) to retrieve the data and calculate the shortest distance from each property to the respective 

POIs. We subsequently cluster POIs that are similar into categories. This helps to avoid missing 

data and to reduce the dimensionality of the regressor matrix, making the models more 

interpretable and more efficient. Exhibit 1 provides a summary of the POI clusters. 
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In addition, we collect macroeconomic data to control for market cycles and varying economic 

conditions. This includes the ten-year government bond yield as well as the four-quarter 

percentage change in the gross domestic product (GDP) at the state-level retrieved from the 

database of the Federal Reserve Bank of St. Louis, the four-quarter percentage change in 

construction costs by region retrieved from the U.S. Census Bureau, and the four-quarter 

percentage change in employment at the county-level retrieved from the U.S. Bureau of Labor 

Statistics. We also collect quarterly real estate market data by property type from NCREIF, that 

is, market value cap rates, market vacancy rates, and market rental growth rates. Furthermore, we 

include a dummy indicator for different market cycles during the sample period to better control 

for shocks and the effect of cyclical movements in the overall market. Market cycles are defined 

EXHIBIT 1   

Clustering of POIs 

Category POI Source 

Public Transport Bus Station Google 

 Subway Station Google 

 Light Rail Station Google 

 Train Station Google 

 Public Transport OSM 

Negative Externalities Prison OSM 

 Graveyard OSM 

 Gas Station Google, OSM 

Food Establishments Restaurant Google, OSM 

 Cafe Google, OSM 

Healthcare Provider Pharmacy Google, OSM 

 Doctor Google 

Retail Stores Shopping Mall Google, OSM 

 Department Store Google, OSM 

Food Stores Supermarket Google, OSM 

 Convenience Store Google, OSM 

Nightlife Venue Bar Google, OSM 

 Nightclub Google, OSM 

Educational Institutions Kindergarten OSM 

 School Google, OSM 

Cultural Institutions Museum OSM 

 Attraction OSM 

Service Establishments Bank Google, OSM 

 Post Office Google, OSM 

Fitness Gym Google, OSM 

 Fitness Centre OSM 

Park Park Google, OSM 
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as periods of consecutive positive (i.e., rising markets), or negative (i.e., falling markets) quarterly 

capital appreciation returns derived from the NCREIF Property Index (NPI). 

 In a last step, we exclude CBSA codes with fewer than ten properties of the same property 

type to prevent overfitting. The final study sample consists of 400,370 quarterly market value 

observations across 18,868 individual properties and is balanced across 30 explanatory variables 

that are presented in the summary statistics in Exhibit 2 and Exhibit 3. Missing and erroneous 

data seem to be concentrated in the early years of the initial sample, as the final study data is 

ranging from the first quarter of 1991 to the first quarter of 2021, covering a period of 30 years. 

 

EXHIBIT 2   

Descriptive Statistics of Numerical Variables 

All Property Types (N = 402,490) 

Variable Unit Mean Sd Min 1st Q. Median 3rd Q. Max 

Market Value [$/SqFt] 189.54 198.54 18.57 71.60 125.40 229.63 2,634.53 

SqFt [k] 283.08 371.09 1.50 109.50 200.64 341.25 22,119.56 

Building Age [Years] 20.77 16.78 0.00 10.00 17.00 27.00 156.00 

Occupancy  [%] 0.92 0.12 0.00 0.90 0.96 1.00 1.00 

NOI [$/SqFt] 2.62 2.45 -48.58 1.13 1.90 3.43 73.74 

Stabilized NOI [$/SqFt] 2.60 2.28 -19.69 1.14 1.89 3.39 56.26 

CapEx [$/SqFt] 0.77 2.91 0.00 0.00 0.14 0.59 311.02 

CapEx Cumulative Sum [$/SqFt] 13.20 40.51 0.00 0.41 3.34 11.65 1,802.37 

Longitude [°] -96.14 17.66 -158.12 -117.53 -93.24 -80.36 -68.75 

Latitude [°] 36.85 5.27 19.63 33.58 37.48 40.72 61.56 

Public Transport [km] 1.70 2.00 0.00 0.32 1.06 2.29 12.99 

Negative Externalities [km] 0.76 0.59 0.00 0.36 0.62 1.00 7.95 

Food Establishments [km] 0.36 0.44 0.00 0.07 0.22 0.50 7.20 

Healthcare Provider [km] 0.42 0.65 0.00 0.08 0.22 0.51 11.93 

Retail Stores [km] 0.92 1.05 0.00 0.24 0.61 1.23 12.93 

Food Stores [km] 0.61 0.55 0.00 0.21 0.46 0.84 8.45 

Nightlife Venue [km] 0.78 0.95 0.00 0.20 0.51 1.06 12.36 

Educational Institutions [km] 0.49 0.52 0.00 0.17 0.35 0.63 8.25 

Cultural Institutions [km] 2.12 1.96 0.00 0.77 1.65 2.84 12.96 

Service Establishments [km] 0.70 0.74 0.00 0.18 0.47 1.00 8.16 

Fitness [km] 0.69 0.84 0.00 0.19 0.44 0.90 12.85 

Park [km] 0.79 0.84 0.00 0.30 0.59 1.00 12.85 

GDP yoy  [%] 0.02 0.03 -0.11 0.01 0.02 0.04 0.22 

Gov. Bond Yield  [%] 0.03 0.02 0.01 0.02 0.03 0.04 0.08 

Construction Cost yoy  [%] 0.03 0.05 -0.10 0.01 0.04 0.05 0.20 

Employment yoy  [%] 0.01 0.03 -0.50 0.00 0.01 0.03 1.10 

Market Cap Rate qoq  [%] 0.06 0.01 0.04 0.05 0.06 0.07 0.10 

Market Vacancy qoq  [%] 0.08 0.03 0.03 0.06 0.07 0.10 0.17 

Market NOI Growth qoq  [%] 0.01 0.03 -0.32 -0.01 0.01 0.02 0.14 
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METHODOLOGY 

To understand pricing processes in commercial real estate markets it is important that the selected 

models adequately capture relationships in the data but are still generalizable enough to predict 

well out-of-sample. Studies that apply different ML methods show that particularly artificial 

neural networks (ANNs) tend to produce robust and accurate predictions when applied in 

EXHIBIT 3   

Descriptive Statistics of Categorical Variables 

All Property Types (N = 402,490) 

Variable N Percent 

Property Type   
... Apartment 88,442 21.97% 

... Industrial 151,109 37.54% 

... Office 99,271 24.66% 

... Retail 63,668 15.82% 

Property Subtype   
... Garden 55,566 13.81% 

... High-rise 26,889 6.68% 

... Low-rise 5,987 1.49% 

... Research and Development 6,049 1.50% 

... Flex Space 17,054 4.24% 

... Manufacturing 729 0.18% 

... Other 2,328 0.58% 

... Office Showroom 440 0.11% 

... Warehouse 124,509 30.93% 

... Central Business District 23,114 5.74% 

... Suburban 76,157 18.92% 

... Community Center 17,757 4.41% 

... Theme/Festival Center 167 0.04% 

... Fashion/Specialty Center 2,951 0.73% 

... Neighborhood Center 23,511 5.84% 

... Outlet Center 113 0.03% 

... Power Center 6,776 1.68% 

... Regional Mall 4,843 1.20% 

... Super-Regional Mall 4,319 1.07% 

... Single-Tenant 3,231 0.80% 

Market Cycle   
... 1991Q1-1994Q1 (Gulf Crisis) 6,324 1.57% 

... 1994Q2-2001Q3 47,506 11.80% 

... 2001Q4-2002Q2 (Dotcom Crisis) 8,310 2.06% 

... 2002Q3-2008Q1 80,138 19.91% 

... 2008Q2-2010Q1 (Subprime Crisis) 35,742 8.88% 

... 2010Q2-2020Q1 201,418 50.04% 

... 2020Q2 (Covid-19 Pandemic) 5,565 1.38% 

... 2020Q3-2021Q1 17,487 4.34% 
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combination with sufficient data (e.g., Peterson and Flanagan, 2009; Zurada et al., 2011; Antipov 

and Pokryshevskaya, 2012; Baldominos et al., 2018; Mayer et al., 2019; Hu et al., 2019).  

 

Machine Learning Approach – Artificial Neural Networks 

The structure of an ANN is inspired by the human brain and consists of several artificial neurons 

that form layers which are interconnected. In its simplest form, a single-layer ANN consisting of 

only one input and one output layer with a linear activation function f as depicted in Exhibit 4, 

Panel A can be described as a linear regression. The bias b and the weights wi of the input values 

xi can then be compared to the intercept and the beta coefficients in an ordinary least squares 

(OLS) regression and formulate the prediction y as exhibited in Equation 1 below.  

 

𝑦 =  𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) (1) 

 

EXHIBIT 4   

Structure of Neural Networks 

Panel A: Single-layer ANN Panel B: Multi-layer DNN 
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The optimal model fit is found by adjusting the weights of each neuron in an iterative 

process in the attempt to minimize a loss function that measures the distance from the actual to 

the predicted values. By adding hidden layers with multiple neurons and choosing other than 

linear activation functions, the model structure can be made more complex and interaction-effects 

as well as non-linearity are introduced. This is referred to as a deep neural network (DNN) as 

depicted in Exhibit 4, Panel B. 

  

Model Agnostic Analysis – Shapley Additive Explanations 

Interpretable machine learning (IML) methods are model agnostic techniques for interpreting 

opaque ML models to achieve ex-post transparency. That is, with the help of IML we can 

fundamentally understand how the model produces a particular outcome. A technique named 

“Shapley Additive exPlanations” (SHAP) introduced by Lundberg and Lee (2017) is capable of 

describing the marginal influences of a model’s features on the prediction. SHAP is conceptually 

based on Shapley values, a coalitional game theory approach to determine the marginal 

contributions of each player to the outcome of a collaborative game (Shapley, 1953). Transferred 

to a ML context, Shapley values can be thought of as the average marginal contribution of a 

feature (i.e., “player”) in a ML model (i.e., “game”) on its prediction (i.e., “outcome”), as 

described by Molnar (2020). Shapley values are derived by repeatedly simulating different 

combinations of input features (i.e., “coalitions”) and assessing how changes to the coalitions 

correspond to the final model predictions. This is done for each possible coalition in the model, 

such that a features’ impact on the model prediction is eventually calculated as the average 

marginal contribution to the overall model score. 

 

Model Estimation 

We choose to estimate a separate DNN for each property type due to the peculiarities of the 

different sectors. The process of model estimation can generally be divided into two parts. The 
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first part involves data transformation, training and tuning of the model. The second part involves 

out-of-sample performance testing to ensure generalizability of the results.  

First, the initial sample is split into 60% training data, 20% validation data, and another 

20% test data. Subsequently, all numeric explanatory variables in the three subsamples are z-

score standardized by removing each feature values’ mean and scaling to unit variance. Each 

model is trained as a sequential feedforward DNN with a variable number of hidden layers and 

neurons. To determine the number of hidden layers and neurons as well as the dropout and 

learning rate, the model is trained and validated on the respective training and validation 

subsamples. Hyperparameters are tuned with a Bayesian optimization tuner. This is a 

hyperparameter tuning framework which predicts parameter combinations and generally leads to 

better configurations with fewer evaluations than grid or random search when dealing with large 

datasets and a wide range of trainable parameters. Subsequently, the model with the best 

hyperparameter combination is trained once more on the whole training set (i.e., training and 

validation data aggregated) and out-of-sample performance is assessed on the remaining 20% test 

subsample. To evaluate the performance of the DNN in the application context, we estimate a 

linear regression model as a point of reference. 

The estimation and performance evaluation of the DNN is then complemented using 

SHAP. This facilitates the interpretability and comprehensibility of the model's prediction rules.  

 

Performance Evaluation 

To assess model performance, we use the mean absolute percentage error (MAPE), the mean 

percentage error (MPE), the mean absolute error (MAE), the mean squared error (MSE), the root 

mean squared error (RMSE), the coefficient of determination (R²) and two error buckets that show 

the proportion of absolute percentage errors below 10% (PE10) and 20% (PE20) respectively. 

MAPE and MAE are direct measures of accuracy (i.e., absolute distance) while MSE and RMSE 

assess the models’ performance for very high values in the test data as high errors are penalized 

more (i.e., squared distance). MPE measures the biasedness of the model (i.e., whether the 

model’s predictions generally tend to be higher or lower than the actual values) and R² is utilized 
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as a measure of overall model fit. Additionally, the error buckets show how dependable the 

models are with respect to certain error thresholds (i.e., errors between 10% and 20% are 

commonly considered a tolerable error range in valuation practices). 

EMPIRICAL RESULTS 

This section features the empirical results of the analysis. First, model performance in estimating 

market values is assessed. With respect to the research objective, we furthermore discuss the 

results from the model agnostic analysis with SHAP and draw conclusions on the features’ 

functional relationships with the dependent variable. 

 

Model Performance 

Exhibit 5 depicts the out-of-sample performance metrics of the DNN as well as the OLS 

respectively. The DNN proves to be highly accurate in estimating market values per square foot, 

with the MAPE ranging between 9.29% and 10.98% and the corresponding MAE ranging 

between 7.56 and 25.54 dollars per square foot. The MSE and RMSE show that the apartment, 

office, and retail models generally produce higher errors that are penalized more than in the 

industrial model, as market values are generally lower in this sector. Across all property types, 

over 85% of the market value predictions of the DNN are estimated within a MAPE of 20%, while 

in the OLS estimation, only around 55% of predictions are falling within this range. In general, 

the OLS shows a considerably lower model fit compared to the DNN. 



 

15 

 

 

 

Global Model Interpretability 

In traditional property valuation, market values of income-generating properties are determined 

with the income approach which consists of two primary elements, rental income and the 

capitalization rate. However, alternative methods such as the sales comparison approach and the 

residual cost approach consider various other factors, including locational, physical, financial, 

and macroeconomic characteristics (see Pagourtzi et al., 2003) that are not necessarily reflected 

in the income approach. Our research focuses on a data-driven methodology grounded in 

economic theory. We use a comprehensive set of physical and structural property attributes, 

neighborhood characteristics, cash flows, and macroeconomic as well as real estate market 

indicators to capture all relevant price-determining attributes. 

To review the relations of employed features in our models we analyze the features’ 

marginal influences that are presented in Exhibit 6. In the respective summary plots, three 

dimensions can be explored with the features being arranged in a specific order that reflects their 

relative importance in the model predictions. For all sectors, the stabilized net operating income 

appears to be the most important feature. The plot also illustrates the characteristics of the features 

EXHIBIT 5   
Model Performance Metrics 

Method R² MAPE MPE MAE MSE RMSE PE10 PE20 

Unit [%] [%] [%] [$/SqFt] [$/SqFt] [$/SqFt] [%] [%] 

 Panel A: Apartment 

OLS 0.77 0.26 0.04 43.61 7,959.58 89.22 0.31 0.55 

ANN 0.97 0.09 -0.03 18.88 1,177.55 34.32 0.65 0.91 

 
Panel B: Industrial 

OLS 0.73 0.24 0.06 17.53 659.82 25.69 0.30 0.56 

ANN 0.95 0.11 0.04 7.56 128.04 11.32 0.62 0.87 

 
Panel C: Office 

OLS 0.76 0.32 0.07 64.99 9,351.87 96.71 0.26 0.48 

ANN 0.96 0.11 -0.03 25.54 1,490.37 38.61 0.58 0.87 

 
Panel D: Retail 

OLS 0.81 0.30 0.07 62.19 15,125.86 122.99 0.31 0.54 

ANN 0.97 0.10 0.03 22.94 2,139.41 46.25 0.67 0.88 
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in the second and third dimensions by indicating whether the contribution of a feature to the final 

prediction is positive or negative and which value the feature takes (i.e., illustrated by color).  

We use the SHAP summary plot to identify the key value drivers and relate them to their 

economic meaning to bridge the gap between economic theory and the data-driven machine 

learning approach. It is important to note that our models do not incorporate inferential 

assumptions that can determine causal relationships. That is, the significance of the features is 

determined solely by the statistical relationships that the model identifies. Ideally, the statistical 

relationships determined by the model are consistent with economic principles and thus contribute 

to the understanding of price formation process in commercial property markets. As discussed by 

Lorenz et al. (2022) a feature importance plot can be utilized to evaluate the relevance of variables 

for a given predictive task. This method allows insight into the reliability of an algorithmic 

hedonic model and its ability to capture a plausible understanding of the economic context. 
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EXHIBIT 6  

SHAP Summary Plot (Top 15 Features) 

Panel A: Apartment Panel B: Industrial 

 

   

Panel C: Office Panel D: Retail 
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In line with economic theory, Exhibit 6 depicts the stabilized NOI and the market 

capitalization rate as the most important feature in the prediction process of the model across all 

property types. Furthermore, the location expressed by the geo-coordinates, the physical 

condition proxied with building age, and the current NOI appear to be equally important across 

all asset sectors and have a strong influence on the model predictions. Moreover, it becomes clear 

that each property sector has individual value drivers, such as the presence of a garden in the case 

of apartment properties or the location of an office building in the central business district (CBD). 

As alluded to previously, SHAP can be used to draw conclusions about the functional relationship 

between explanatory variables and the dependent variable. This is particularly beneficial in the 

context of real estate valuation, where understanding of pricing processes is of paramount 

importance. Exhibit 7 shows the relationships of four explanatory variables with SHAP partial 

dependence plots.  
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Exhibit 7, Panel A depicts the dependence plots of stabilized NOI and its impact on the 

prediction of the market value. Across all asset sectors a positive linear relationship for values 

greater than zero can be observed, as expected market values increase with an increasing 

stabilized NOI. A negative stabilized NOI shows a non-linear pattern that will be interpreted with 

further analysis carried out below. The second most important feature in the prediction of market 

values is the market capitalization rate. Exhibit 7, Panel B depicts the relation of this feature to 

the impact on the market value and it takes the expected relationship in all four property types. 

EXHIBIT 7   

SHAP Partial Dependence 

                Apartment  Industrial Office             Retail 

Panel A: Stabilized NOI 

  

Panel B: Market Cap Rate 

  

Panel C: Building Age 
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As the capitalization rate is a proxy of risk and return in the real estate market, market values 

generally decrease with increasing capitalization rates. Notably, the plot for industrial properties 

deviates from the other property types, but this is due to the mean value of industrial properties 

in the sample being significantly smaller. With respect to a property’s physical condition, we 

focus on the impact of property age. Lorenz et al. (2022) show that, in line with economic theory, 

the age of an apartment exhibits a U-shaped pattern, that is both newest and oldest buildings 

generate highest rents. In Exhibit 7, Panel C we observe that this is also the case for the apartment 

sample alongside with the office and retail properties. Only for industrial properties this U-shape 

seems to be less pronounced. The plot of industrial properties generally shows a lower building 

age, which can be attributed to the nature of heavy industry use and the limited usability by third 

parties.  
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 While Exhibit 7 shows features that have similar impacts across the four property types 

Exhibit 8 depicts features that behave differently in their relation to market values across the 

property types. Exhibit 8, Panel A illustrates the relation of Capex and its model’s impact on the 

market value. Generally, Capex lead to an increase in market values whereby the marginal effect 

varies across property types. A dollar of Capex per square foot appears to have the strongest 

EXHIBIT 8   

SHAP Partial Dependence 

                Apartment  Industrial Office             Retail 

Panel A: Capital Expenditures 

  

Panel B: Cultural Institutions 

  

Panel C: Public Transport 
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impact on the market value per square foot for apartment properties whereas industrial properties 

exhibit the lowest marginal effect. Exhibit 8, Panel B depicts the impact of the proximity to a 

cultural institution (i.e., museum, entertainment facilities or attractions) on the model’s prediction 

of the market value. It is interesting to observe that retail properties in close proximity to cultural 

institutions experience a higher premium than all other property types. This could be related to 

increased pedestrian flows generated by cultural institutions which drive market values of retail 

properties. In contrast, the proximity to cultural institutions seems to pose no effect on the market 

value of industrial properties. Exhibit 8, Panel C shows the impact of a property’s proximity to 

public transport on the market value. Whereas for industrial properties the impact seems 

considerably low, retail, apartment and office properties show strong relations to this POI. 

Interestingly, retail and apartment properties experience a positive impact on the market values 

when in close proximity to public transport but barely see negative impacts for larger distances. 

However, in the office sector, public transport seems to be of particular interest as bigger distances 

are related to negative impacts on the predictions. Hence, there seems to be a sweet spot up to 

which the presence of POIs matters. 

Exhibit 7 and Exhibit 8 present multiple instances where a feature can take values that 

result in both a positive and negative model impact. The factors contributing to such attributions 

can be examined more closely with the interaction effects for the respective variable. For example, 

the stabilized NOI in Exhibit 7, Panel A shows negative values leading to both positive and 

negative model impacts. We expect such behavior to be related to structural characteristics of the 

corresponding properties and thus analyze the interaction effects of the stabilized NOI with both 

capital expenditures as well as occupancy, illustrated in Exhibit 9.  
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Exhibit 9, Panel A displays the interaction effect between occupancy and stabilized NOI, 

while Exhibit 9, Panel B shows the interaction effect between cumulative Capex and stabilized 

NOI. The blue color on the graphs indicates low interaction feature values, while red color 

indicates high interaction feature values. We observe that in cases where negative NOI contributes 

negatively to the model prediction and thus leads to the expectation of lower market values, both 

occupancy and capital expenditures tend to be low, indicating high vacancy and potentially lower 

building quality in comparison to other properties. On the other hand, observations with negative 

NOI that contribute to the model’s prediction positively are characterized by higher occupancy 

and high capital expenditures that increase a buildings quality and thus the value. In Exhibit 10, 

we analyze the observed U-shaped pattern in the building age by inspecting interaction effects 

with both location (Panel A) and income (Panel B). In suburban areas, the building age generally 

shows a negative relation as seen in Exhibit 10, Panel A. That is, older properties that are located 

in suburban areas tend to have lower market values. From Exhibit 10, Panel B we can deduct 

that properties for which high building ages are positively related with market value and high 

NOIs tend to be clustered in CBDs. Osland (2010) summarizes the main rationale behind early 

land economic theories and concludes that overcoming space in any form is costly and therefore 

EXHIBIT 9   

SHAP Partial Dependence with Interaction Effects (Financial) 

Panel A: Stabilized NOI vs. Occupancy Panel B: Stabilized NOI vs. Cumulative Capex 
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needs to be economized. Thus, highest centrality in the CBD of a city creates high demand that 

generally leads to high values.  

 

Of course, the centrality of a property cannot only be described by its location in the CBD 

or a suburban area, but can also be formulated as the sum of multiple characteristics that define 

the location of a property. Can (1992) mentions neighborhood effects which refer to 

characteristics that drive demand for real estate in a certain location (i.e., neighborhood) and 

should materialize in the price function. 

Such trends are not only seen for the market value but generally for the price level when 

observing the interaction effect of the stabilized NOI and the proximity to public transport or food 

establishments. This is demonstrated in Exhibit 11 – the bigger the distances to public transport 

or food establishments the lower the stabilized NOI that is paid for that property. It is noteworthy 

that the turning points for the positive effects on the models diverge between the two POIs. 

Exhibit 11, Panel A shows that public transport links located within approximately 750 meters 

of a property show a positive impact, while food establishments only show positive neighborhood 

characteristics within a radius of approximately 150 meters as depicted in Exhibit 11, Panel B. 

EXHIBIT 10   

SHAP Partial Dependence with Interaction Effects (Structural) 

Panel A: Building Age vs. CBD Panel B: Building Age vs. Stabilized NOI  

  

 
 

  
    

 



 

25 

 

 

Local Model Interpretability 

Shapley values do not only offer the possibility to analyze the relations of variables on a global 

(i.e., aggregated) level but also provide a local interpretation as Shapley values are calculated for 

each observation. Thus, the individual contribution of features to the predicted market value can 

be explained on the property-level. From the SHAP summary plots and partial dependence plots 

each colored dot represents a single observation that can be explained on its own. SHAP force 

plots can visualize each single observation to make it comprehensible on the smallest level 

possible. The contributions of all features are shown as the difference between the actual 

prediction and the mean prediction (base value) for that very observation. This breaks the 

expected market value down to the contributing characteristics. It is important to note that feature 

effects can behave differently for different observations. 

EXHIBIT 11   

SHAP Partial Dependence with Interaction Effects (POIs) 

Panel A: Stabilized NOI vs. Public Transport Panel B: Stabilized NOI vs. Food Establishments 
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Exhibit 12 shows the composition of a market value prediction for an office property located 

in Boston, Massachusetts. The prediction for this office property’s market value is estimated to 

be 494.18 $/SqFt. The mean prediction (base value) of office market values in the sample is 

258.53 $/SqFt and can be thought of as the “best guess” to predict the market value without 

knowing anything about the specific property. The features that mainly drive the prediction from 

the base value of 258.53 $/SqFt to the estimated 494.18 $/SqFt are the stabilized NOI, location, 

market cap rate, and the building age. In this example the square footage of the property reduces 

the prediction as it contributes negatively. The property is newly built (building age = 2 years), 

located in the CBD and has a stabilized NOI of 5.23 $/SqFt, well above the sample average of 

2.50 $/SqFt, thus increasing the prediction relative to the base value. The positive contribution of 

the stabilized NOI to the prediction increases the base value by 149.58 $/SqFt. Additionally, the 

building age of the property contributes 46.85 $/SqFt, while its CBD location contributes 38.65 

$/SqFt, and the market value cap rate of 5% in the quarter of observation contributes 54.99 $/SqFt. 

In total, these four features result in a contribution of 290.07 $/SqFt to the base value of 258.53 

$/SqFt, leading to a predicted value of 548.59 $/SqFt. However, this is not the predicted 494.18 

$/SqFt as so far, the negative contributions have been left aside. As highlighted in blue color, the 

size of the property has a negative impact and pushes against the other features, thus reducing the 

final prediction. The size of the property, with 38,500 square foot is smaller than the sample 

EXHIBIT 12   

SHAP Force Plot 
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average of 277,124 square foot resulting in a negative impact 30.63 $/SqFt. In sum all other 

features add up to a negative 23.78 $/SqFt and lead to an expected market value of 494.18 $/SqFt.  

CONCLUSION 

The objective of this study was to introduce an effective and comprehensive framework for the 

practical utilization of ML-based automated valuation models (AMVs) in the domain of 

commercial real estate that seeks to strike a balance between accuracy and interpretability of the 

estimation method without compromising neither one. To illustrate this, we trained a deep neural 

network (DNN) using a unique sample of more than 400,000 property-quarter observations from 

the NCREIF Property Index (NPI) and applied model-agnostic “Shapley Additive exPlanations” 

(SHAP) to shed light on the algorithm's prediction rules. The proposed method enabled ex-post 

interpretability of the models’ prediction rules and could disentangle value drivers on an 

aggregated global level as well as on a disaggregated local level, that is for each property 

individually.  

 The proposed methodological framework demonstrates high accuracy in the estimation 

of commercial real estate market values across all four asset sectors. SHAP demonstrates that the 

inner workings of data-driven techniques are generally consistent with economic theory and 

follow predominantly the traditional income approach by using the net operating income and 

market capitalization rates as the key explanatory features. Moreover, the location expressed by 

the geo-coordinates and the distance to points of interest as well as the properties’ physical 

condition proxied with building age showed a strong influence on the models’ predictions. 

Deviations in the feature importance across property types were observed predominantly in sector 

specific characteristics. Furthermore, non-linear and three-dimensional relationships between 

market values and features were revealed and confirm previous findings in the literature. For 

instance, it could be shown that the relation between market value and building age follows a U-

shaped function, which can be explained by the bid-rent curve, as older buildings tend to be 

concentrated in city centers and CBDs, as well as a sample selection bias as good-quality 

buildings prevail while outdated or stranded assets leave the market to make room for new 
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developments. On the local level of interpretation, SHAP furthermore showed that the effect of 

individual features can differ significantly across properties due to non-stationarity across space 

and time. This is perhaps one of the main advantages of machine learning techniques compared 

to linear hedonic models, as the latter reduce feature effects to a single, fixed beta coefficient that 

does not allow to differentiate complex interactions between regressors. 

In summary, our study demonstrates that machine learning algorithms can obtain both 

the estimation accuracy and interpretability, while following and economic logic and being 

consistent to the existing understanding of pricing processes in the literature. The use of these 

techniques can moreover add to the existing knowledge by providing a deeper and more nuanced 

understanding of pricing processes in institutional investment markets.  

That said, the machine learning methods also come with certain limitations that should 

be considered carefully before their use. Despite their powerful applications, these methods are 

not a panacea that can solve all real-world problems. However, if applied prudently, they could 

provide an answer to several problems and may become an indispensable tool for many tasks. 

With immense amounts of data being recorded every day and the development of quantum 

computing, machine learning applications are about to experience a steep improvement in terms 

of scale and efficiency. However, with these advances taking at least another five to ten years to 

take hold, the application of interpretable AVMs in the commercial real estate sector is a 

milestone on a path yet to be travelled. By pointing to the caveats and illustrating the potential of 

these methods, our contribution represents a further step along this path and will hopefully 

motivate further research in this field. 
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