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Abstract This paper examines the relationship between location, specifically urban spatial
structure, and commercial real estate capitalization rates. Here, a novel control vector describes
non-linear bid-rent curves, enabling exogenous spatial control in commercial real estate pric-
ing models with non-random spatial observation or treatments, such as commercial transaction
data. First, the paper estimates this new control vector, a series of continuous form urban spatial
structure factors, at the Census Block Group level using Principal Components Analysis, which
offer a simplified and alternative methodological pathway to similar econometric techniques such
location grids, spatial fixed effects, and spatial autocorrelation. Then, these exogenous measures
of location are evaluated for utility in hedonic pricing models where transaction data or treat-
ments are scarce or spatially biased, such as the thinness of data on office and retail transaction
cap rates. Results indicate that across each of the asset classes, transaction prices and capital-
ization rates are both statistically and economically sensitive to variation in the spatial factors.
In addition, spatial models of risk demonstrate that retail cap rates are more sensitive to loca-
tion than office cap rates. Practically, spatial models of risk can improve the allocation of real
estate investment capital in complex polycentric urban markets. Finally, the utility of this new
exogenous spatial control vector is tested alongside traditional spatial valuation techniques in
a forecasting context: automated valuation models of the single-family housing market, where
transaction data is not scarce. This spatial control vector produces similar accuracy statistics as
traditional approaches in forecasting.

JEL: R20, R31, R40
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Introduction

The understanding of the relationships between location, land use, and property values continues
to evolve across urban economics, real estate, and finance (Alonso, 1968; Anas et al., 1998; Saiz,
2010). The debate about these relationships helps to enhance urban economic, asset pricing,
default, transportation and other related models (An and Pivo, 2020; Kok et al., 2014; Titman
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et al., 1985; Bialkowski et al., 2021). This paper is motivated by two problems common to real
estate analysis incorporating this debate.

The first problem is the limited consensus about how to measure the spatial characteristics of
non-linear bid-rent curves, particularly outside traditional monocentric models (i.e. in suburbs
and polycentric cities), that shape urban land price variation (Wheaton, 1979; Wieand, 1987;
Anas and Kim, 1996). The second is the potential for location value and price effects to be
attributed to and confounded by exogenous factors that are not spatially independent (Bourassa
et al., 2020). For example, the growing popularity of research on estimated price effects of real
estate treatment attributes (i.e., green building certification) can be confounded by spatial bias
of treated assets (Fuerst and McAllister, 2011). These are significant problems for institutional
investors with spatially diversified portfolios seeking to identify new investment opportunities.

The emergence of ”big data” (Glaeser et al., 2018b; Bourassa et al., 2020) provides a potential
innovative solution with recent work in the urban economics, planning, real estate, and trans-
portation literature examining the role of direct and alternative spatial measurement approaches
(Ewing and Cervero, 2010; Kuang, 2017; Bourassa et al., 2020; Gabe et al., 2021; Fisher et al.,
2020). However, there are limits to the value of big urban data (Glaeser et al., 2018b); not all of
it adds value or helps clarify the complexity within urban economic spatial relationships. These
limits create the opportunity for this paper; the opportunity to generate simplified large data
measures of location that capture spatial and economic relationships.

This paper explores whether ”big data” can be used in a variance reduction framework to
extract latent factors of urban spatial structure. For example, some measure of density (i.e.
employment) often is used to proxy land use intensity, though it is often noisy at small spatial
scales. Here, this paper uses Principal Component Analysis (PCA) to generate two latent and
non a priori factors from the Environmental Protection Agency Smart Location Database (SLD),
over 90 measured characteristics of urban spatial structure.

The resulting latent ”Factor 1” describes urban economic activity intensity across entire poly-
centric urban forms as a continuous variable constructed from urban form attributes traditionally
associated with a central business district (CBD). Latent ”Factor 2” is orthogonal, a feature of
PCA, and identifies lower density suburban or exurban spatial structure akin to Hoyt’s concept
of the outer ring. Combined, these factors represent a non-linear continuous measurements of
location at the Census Block Group (CBG) level. Contributing inputs to the two latent factors,
and thus their subjective interpretation, are consistent across major U.S. Metropolitan Statistical
Areas.

As a result, these latent factors offer a potential new methodological pathway to complement
other econometric and geospatial controls for urban spatial structure such as location (x,y) grids,
spatial fixed effects, and spatial autocorrelation. Importantly, an exogenously measured control
for location could evaluate, using a non-linear bid-rent curve, the multi-dimensional economic
relationships between location and prices or rents, which largely consists subjective definitions
of spatial sub-markets or arbitrary identification of central business districts.

A further advantage of the latent factors of urban spatial structure explored here is that they
are measured exogenously to a dataset of observed prices or transactions. Existing techniques to
control for location in asset pricing models - spatial fixed effects, (x,y) spatial grids, or spatial
autocorrelation - rely on econometric techniques to infer the value of location from the observed
data. In contrast, an exogenous measure of location could control for location value in data
samples lacking statistical power to endogenously control for spatial effects, such as spatially
variant samples with relatively low numbers of observations.

Commercial real estate transaction models are a prime application for this technique. Office
and retail asset sales are relatively thin in a given market when compared with housing sales,
so current modelling strategies must add a lot of spatial and/or temporal variance (large areas
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in the sampling frame and/or with multiple years of observations). To examine the potential of
latent Factors 1 and 2 to address the problems and opportunities identified above, both Factors
are incorporated into hedonic regression models analyzing a 10-year sample of office and retail
transaction prices and capitalization rates from Real Capital Analytics. The sample contains
approximately 40,000 office and retail transaction observations in more than 35 U.S. Core Based
Statistical Areas (CBSA). Approximately 25% of these transactions have income data to evaluate
cap rates. One immediate practical goal is to examine, and map, the relationship between these
exogenous measures of location and cap rates, enabling the capital markets to evaluate the risk
premium placed on any Census Block Group in a CBSA of interest.

To explore the robustness of this spatial control, this research evaluates how well these latent
spatial factors perform compared to traditional spatial controls, a question similar to that of
Bourassa et al. (2020), but with a different proposed measure of urban activity. Out of sam-
ple testing is conducted on single-family detached housing data, where data sample sizes are
traditionally seen as sufficient for endogenous spatial controls.

The paper addresses three research questions: 1) In both office and retail, where spatial
heterogeneity is greater than in single-family housing, how if at all, are the new latent measures
of urban spatial structure related to commercial real estate pricing and risk evaluation (cap
rates)? 2) To what extent, if any, can latent factors of urban spatial structure identify and map
spatial relationships associated with commercial real estate pricing and risk? And 3) to what
extent, if any, do the latent factors suggest capacity to attenuate issues of spatial endogeneity in
real estate pricing models?

The results suggest two contributions to the literature. First is a proof of concept. Models
indicate that across each of the asset classes, both transaction prices and capitalization rates are
both statistically and economically sensitive to variation in the continuous form specifications
of each PCA factor. This leads to practical insights, notably that retail risk is more location-
sensitive than office, which has less spatial heterogeneity. Accuracy of predictions using PCA
Factors in housing price models show similarities with current techniques of spatial control. This
suggests that PCA Factors 1 and 2 produce useful exogenous location signals at small spatial
resolution, and can be evaluated for any Census Block Group in the United States. This method
is statistically efficient at low sample sizes; the smaller sample size for cap rates (n 10,000 over
10 years and 35 markets) relative to the sample for transaction pricing (n 40,000 over 10 years
and 35 markets) produce nearly identical maps of spatial market variance.

Second, the use of latent PCA factors of urban spatial structure ”big data” can control
for spatial bias in real estate models similar to current methods but the exogenous nature of
these latent factors fills a niche to control for spatial bias in models with small sample sizes.
Factors 1 and 2 add statistically significant though only marginal economic value to out-of-
sample forecasting models using traditional spatial approaches (e.g., small-scale fixed-effects or
spatial autocorrelation when sample sizes are large). This finding is congruent with evidence from
analyses by Bourassa et al. (2020) suggesting that big data might not provide a panacea and
that indirect or endogenous measurements may, in appropriate circumstances, offer an equally
acceptable methodological approach in regards to forecasting accuracy. However, it is also clear
that the the PCA factors do help isolate and control for spatial bias when sample sizes are
too small for traditional spatial modelling approaches, a particular problem when treatment
attributes do not have a random spatial distribution.
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Background & Identification Framework

Urban Economic Models & Property Prices

The traditional urban model provides an explanation of relationships between urban form and
property prices. It originally identified an inverse linear relationship between central locations and
land rents or property prices (Alonso, 1968); this relationship is a bid-rent curve describing the
decrease in willingness to pay for proximity to centrality and the attendant increase in commuting
costs Muth (1975). In its simplest application, the model assumes a monocentric urban area on
a flat plane, where housing can occur in any location and location value is based on access to
the monocentric urban center.

However, urban areas are rarely monocentric and are often constrained by idiosyncratic ge-
ography (Saiz, 2010). Further, households and firms with differing levels of wealth also attempt
to satisfy multi-faceted utility functions that incorporate public service quality, dis-amenity and
tax avoidance, and other factors besides accessibility (Wheaton, 1974). They may not select lo-
cations with the greatest proximity to traditional central amenities in favor of satisficing or other
decision-making paradigms. There is, as a result, substantial debate about how to easily measure
the spatial and economic drivers of urban property prices (Anas and Kim, 1996; Ahlfeldt and
Wendland, 2013; Fisher et al., 2020).

Competing explanations draw on agglomeration spillover models where complementarities
and dynamics between firms (and labor) sharing public good inputs explain urban land price
variation (Eberts and McMillen, 1999). Other models postulate a dynamic urban spatial structure
equilibrium predicated on the ways that firms balance the exogenous benefits from co-locating
near other producers against their workers commuting costs (Lucas and Rossi-Hansberg, 2002).
Assumed in these alternative explanations, is the notion of poly-centricity and that housing or
commercial activity can occur in a multiplicity of spatial formats.

These different and competing perspectives illustrate the complexity of urban land markets
where location supply inelasticity clashes with differing tastes and preferences of households and
firms (Roback, 1982; Titman et al., 1985). They also demonstrate that variation in property prices
is materially related to multiple dimensions of location such as the diversity of land use, density,
and dimensions of accessibility to and across the urbanized landscape (Glaeser et al., 2018b).
They also reveal the limited consensus about how to easily measure the spatial characteristics of
non-linear bid-rent curves, one of the problems motivating this paper. Converting this complexity
into a functional form for pricing models is a major topic of real estate research.

0.1 Modelling Cap Rates and Commercial Real Estate Investment Risk

In commercial real estate, there is a literature examining the factors that contribute to variation
in cap rates—including analyses of location (Peng, 2016; Bialkowski et al., 2021). Of note and
significance here is work by Fisher et al. (2020) analyzing the relationship between location and
performance of public REITs. They contend that supply inelasticity in urban spaces creates
advantages over those in suburban locations; that rent and price changes should be greater
in supply constrained locations and that those locations are likely to have greater capacity to
withstand supply shocks.
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Urban Spatial Structure Data

Innovation in empirical information on urban spatial structure has evolved with advances in
remote sensing, geographic information systems, and detailed longitudinal surveys (Naik et al.,
2016). Emerging ”big data” adds potential to enhance the descriptoin of urban spatial structure
rather than more oblique proxy measures in common use, like distance to a node of interest
(Chetty et al., 2014; Glaeser et al., 2018b). Early work using such data in real estate modelling
involved ”walkability” indices such as WalkScore, which provides a composite index describing
the walkability, or friendliness of the urban form to walking for recreation or transportation,
of a particular location. Evidence indicates that walkability is positively associated with office
and multi-family property prices (Pivo and Fisher, 2011; Bond and Devine, 2016)). More recent
measurement advances include the use of consumer review or mobile phone tracking data to
describe travel behavior at different scale and frequency than traditional survey measures. The
evidence suggests that in some cases, such ”big data” can be additive to analyses of urban
phenomena (Glaeser et al., 2018a; Kuang, 2017). In other cases, despite the novelty, big data
fails to add value to existing modelling techniques (Bourassa et al., 2020).

Specific to real estate pricing models, small scale geographic fixed effects appear to better
instrument for the spatial value of a particular location in housing markets than novel mobile
phone tracking data used to describe transport patterns (Bourassa et al., 2020). But not all real
estate pricing models can use small scale fixed location effects, which are available in large or
spatially concentrated sample sizes like single-family housing sales in urban centers.

This insight raises the possibility of differentiated outcomes in the utility of ”big data” applied
in the description of urban spatial structure. Could ”big data” have utility in questions that
can only be addressed with sample-size constrained data or at large spatial scales? Currently,
basic exogenous measures such as distance to a pre-determined central business district (CBD)
or institutional definitions of sub-markets are used in models such constrained contexts and
have limitations that novel geospatial data may overcome. As an example of these limitations
on current practice, brokerage houses and other real estate market participants have modified
institutional definitions, so sub-market definitions can be dynamic and vary depending on the
brokerage house. In the case of CBDs, the Census defined boundaries align with a specific Census
Tract (CT) or multiple Tracts (Limehouse and McCormick, 2011), but institutional sub-market
boundaries may or may not align with Census geographies. That leads to problems as many
demographic and other relevant variables of interest to real estate market modellers are produced
using Census geographies. As a result, there appears to be an untested opportunity for novel ”big
data” urban spatial structure metrics to increase the utility of sample-constrained real estate
pricing or risk models.

Recognizing this opportunity, urban geography research suggests potential for a novel spatial
location index based on exogenous measurements of urban form and transportation infrastructure
that go beyond walkability. This work assumes efficient transportation infrastructure allows less
ideal locations to substitute for those highest in demand by reducing the slope of the bid-rent
curve (Alonso, 1968). Further, it relies on the notion that urban residents seek to maximize
spatial utility, but are forced into trade-off decisions by budgets and competing preferences to
centrality of location. Centrality has many aspects, including (among others): reach (Sevtsuk
and Ratti, 2010), a measure of how many places are directly accessible from a specific location
within a restricted distance; gravity (Hansen, 1959), the degree to which directly accessible
areas are nearby or far away from a desired location, such as a CBD; betweenness (Freeman,
1977), the frequency that a specific location is on the shortest path between any two areas;
closeness(Sabidussi, 1966), or how central a specific location is to all other places in the urban
area; and straightness (Porta et al., 2009), or whether the transportation network is designed
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such that distances from a specific location to other places match with Euclidean (straight-line)
distances.

In 2015, the EPA Smart Location Database (SLD) was first produced to gather innovative
empirical data on urban form, which can be used to identify and describe location efficiency
across multiple dimensions of urban form (Song and Knaap, 2004; Ewing and Cervero, 2010).
The SLD provides direct measurement of urban form across five distinct categories, or dimensions:
density, land use diversity, design, destination accessibility, and distance to transit. Within each
dimensions, the SLD provides a number of detailed individual metrics (e.g., employment density
across 10 different industrial classifications) in continuous form specification (these data are
described in further detail below). Measuring urban spatial structure directly and across dozens
of metrics, it offers an opportunity to use ”big data” to improve exogenous and non-linear
measurement of urban spatial structure, which was previously latent, elliptical, or formed by a
priori assumptions (Glaeser et al., 2018b).

Integrated Framework and Expectations

The identification framework proposed to exploit the SLD in real estate modeling, while recog-
nizing competing explanations for the relationships between property prices and urban form, the
differences and challenges in measurement techniques underpinning them, and the potential for
location value and price effects to be attributed to and confounded by exogenous factors that
are not spatially independent.

Differing from recent approaches in Fisher et al. (2020), the framework assumes that each
unit of geography (e.g., a neighborhood or Census Block Group) can have multiple concurrent
spatial ontologies and be formed by multiple spatial economic factors. It assumes that these
dimensions include both urban and the suburban—attributes that can be endogenous. Following
Glaeser et al. (2018b), the framework expects that the SLD increases the precision of measuring
urban spatial economic concepts including land use diversity, building and employment density,
urban design, accessibility, and proximity to transit amenities. Moreover, it assumes that several
continuous form measures can be derived from the SLD data using variance reduction strategies
to extract latent signals, a non a-priori framework, and that the resultant continuous form
latent signals have the potential to measure the complex non-linear bid-rent curves for that unit
of geography. In other words, rather than using a single measure or estimating a single bid rent
curve for an entire market, even a poly-centric one (Heikkila et al., 1989)), the new data makes
it possible to estimate continuous bid-rent curves for a geographic unit that can be updated on
future releases of the SLD.

With respect to commercial real estate, the framework expects that these continuous la-
tent urban form measures will be statistically and economically significant predictors of office
and retail transaction prices and capitalization rates (McMillen and McDonald, 1997; Pivo and
Fisher, 2010; Fisher et al., 2020). It also assumes that prices and risk respond to both urban
and suburban characteristics (Bourassa et al., 2007), and that a particular urban location can
have overlap of urban and suburban structure. Such factors should present with opposite effects;
for example, urban oriented factors are expected to present positively in office transaction prices
(and negatively in cap rates) while the suburban oriented factors are expected to present oppo-
sitely given the spatial distributions of the asset classes (Fisher et al., 2020). Measuring ”urban”
and ”suburban” separately allows a non-linear relationship between price (or risk) and location
efficiency.
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Data

The data used here combines two types of information: 1) building level observations describing
both structural and economic attributes for a sample of office and retail buildings within 35 Core
Based Statistical Areas in the United States and 2) an array of urban spatial structure data
from the Smart Location Database as ”big data” with potential to measure spatial structure
exogenously. All building level data is from the Real Capital Analytics Transaction Database.
Additional control variables come from the U.S. Census American Community Survey 5-year Es-
timates, US Census ”Tiger” shapefiles, and Applied Geographic Resources. The common spatial
scale for this analysis is the US Census Block Group (CBG).

There are two analysis data sets. The first is the EPA SLD. It is used to estimate the latent
urban form factors used in later models. The second analysis data set is constructed by matching
each property (by geographical coordinates) with its relevant Census Block Group. This enables
the integration of the urban spatial structure data using Federal Identification Processing Stan-
dard (FIPS) codes unique to each Block Group. For the extraction of latent variables of urban
spatial structure, the Block Group is the unit of analysis. For pricing models, a unique commer-
cial property is the unit of analysis; each row of information contains cap rate and/or transaction
observations for a building, physical descriptors of that property, the latent urban form variables
generated from the spatial structure data (detailed below), and auxiliary location information
for the CBG. (Gordon-Larsen et al., 2006; Song and Knaap, 2004).

Smart Location Data

The EPA Smart Location Database (SLD) provides measures of several demographic, employ-
ment, and built environment variables for every CBG in the United States (Ramsey and Bell,
2014). The SLD contains more than 100 measures of across five dimensions of urban form: land
use density, land use diversity, urban design, destination accessibility, and transit proximity. In-
dex variables included in the SLD package that are derived from individual SLD measures, such
as the EPA Walkability Index, are excluded. The SLD contains a number of measures from the
General Transit Feed Specification (GTFS). However, the GTFS data does not exist for the en-
tirety of the 35 markets in the sampling frame. Consequently, all GTFS measures are excluded.
This reduces the SLD data to 90 unique measures of urban form available for nearly all CBGs
in the United States.1

To describe the dimensions of urban form that produce these 90 input variables, Density mea-
sures housing units per acre, population per acre, and jobs per acre by industrial classification.
Land Use Diversity describes the different land uses within an area. Specific factors measuring
land-use diversity include jobs-housing balance, employment entropy and trip generating esti-
mates based on employment diversities. Design describes elements of physical and transport
infrastructure and the bias of each type of design relative to its users (e.g., cars, transit, or
people). Individual metrics detail the total road network density, network density for various use
modalities and intersection density by intersection type. Distance to Transportation summarizes
access and quality of nearby fixed guideway public transport. Fixed guideways describe rail and
bus infrastructure with exclusive rights-of-way. Specific measures include the proportion of the
CBG employment within one-quarter and one-half mile buffers of transit stops and the frequency
of transit service within a CBG. Destination Accessibility describes proximity and accessibility
to and across the city by various of modes of transportation. Individual metrics of destination

1 CBGs in the state of Massachusetts do not include 10 employment data variables in the SLD, so Boston and
other CBSAs that include Massachusetts CBGs are run on 80 variables.
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accessibility measure a range of accessibility indicators derived from engineering and structural
equation models drawing on transit patterns, trip generation matrices, employment, and housing
patterns.

Variable definitions for each measure in the SLD are provided in the Appendix.

Property Information

Building level observations are drawn from the Real Capital Analytics Property database. This
database captures information about building and structural attributes (e.g., ownership, square
feet, age, etc). It also includes economic and transactional details (e.g., recent transaction prices,
transaction dates, capitalization rates). RCA provides location details for each building including
latitude/longitude; for the office product type, it identifies whether or not the property resides
within a pre-determined Central Business District of its respective market. Relevant property
level variables used in the analysis are summarized in Table 1.

Office building data reflect mean prices in CBD areas exceeding $85 million and suburban
office near $18 million. These price points reflect the institutional character of the data set,
although there is some right skew in the CBD cohort from a small number of large purchases.
Malls and strip malls have mean prices of roughly $12 million and $11 million respectively.

Modeling and Identification Strategies

In the context of the aforementioned research opportunity for a novel exogenous measure of
location efficiency for use in real estate models, a two-step method first identifies the new metric
and then tests its utility in a variety of real estate modelling contexts. This first step uses
Principal Component Analysis (PCA) as a variance reduction strategy to generate a set of latent
urban form factors derived from the SLD. The second step evaluates consistent latent factors in a
traditional hedonic framework to analyze the relationships between urban spatial structure and
commercial real estate prices and yields (Rosen, 1974; Sivitanides et al., 2003), specifically in the
context of commercial real estate risk models, where observations are thin and spatially diverse.
Out of sample testing in single-family housing is also employed to assess construct validity relative
to existing strategies of location control.

Principal Component Analysis of the Smart Location Database - Methodology

Principal Component Analysis (PCA), as a variance reduction method to extract latent signals
out of noisy data has been used in the real estate and urban economics literature for measuring
real estate returns (Cotter and Roll, 2015), sentiment (Heinig and Nanda, 2018), and urban
vibrancy (Barreca et al., 2020). The detailed matrix algebra behind PCA is detailed in Ringnér
(2008); Wold et al. (1987); Abdi and Williams (2010) and briefly summarized below.

The innovation tested here is that the 90 variables in the SLD are noisy proxies for latent mea-
sures of urban spatial structure, and PCA can extract these latent signals to produce continuous
measures of location relevant to real estate markets. For example, auto ownership is expected
to be higher in suburban spaces and lower in urban spaces and employment densities are con-
centrated in CBDs and other commercial centers. PCA uses this noisy data to find orthogonal
vectors that describe continuous measures of ”urban” and ”suburban” spatial structure (and
other urban form characteristics) using the variance observed across the entire dataset. These
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vectors, which can be described qualitatively by interpreting correlations with the input data,
are unobservable latent measures of urban spatial structure derived from what can be observed.

To generate these latent vectors, consider the SLD as N × X matrix S, where N is the number
of Census Block Groups (i.e. observations) and X the number of SLD input variables (90). As
each variable in X has different units, scale each variable to unit variance to allow for equal
weighting by variable. Next, compute eigenvalues (λ) of the covariance matrix of S (KXN):

det(KXN )− λI = 0 (1)

Where I is the identity matrix matching the dimensions of the covariance matrix (X × X).
There will be X eigenvalues. For each eigenvalue, calculate the corresponding eigenvector of
length X. Arrange these eigenvectors in order based on their eigenvalues from highest to lowest
to arrive at X × X matrix, R, which preserves all variance observed in KXN (the covariance
matrix of S).

A key characteristic of R is that the eigenvalues, in descending order, represent the amount of
variance communicated by each eigenvector; practically these are interpreted as the latent factors
underlying the observed survey data. Removing the eigenvectors with the smallest eigenvalues
(e.g. those on the right-side of R) has minimal effect on the overall variance remaining in matrix
R, an efficient means of reducing dimensionality. Furthermore, as a characteristic of eigenvectors,
each remaining eigenvector is uncorrelated with all preceding eigenvectors.

The decision on how many eigenvectors to retain is inherently subjective. Eigenvalues collec-
tively sum to the total variance observed. With each variable having unit variance, the eigenvalues
of S will sum to X (i.e. the number of variables in the SLD). Thus, one approach is to discard
any eigenvalue less than 1, as it contains less information than an original input variable. An-
other approach is to start from the left and cumulatively sum eigenvalues until reaching a certain
percentage of the original variance; 50%, 60%, and 80% are all common thresholds.

A third approach, used here, is to concentrate on the practical interpretation of each eigen-
vector, which is less rigid, but more meaningful than the above approaches. In essence, start
with the eigenvector associated with the highest eigenvalue, then move to the next highest. To
”interpret” each eigenvector in practical terms, the authors evaluate the 10 input variables which
have the 10 highest positive covariances with the subject eigenvector and the variables with the
10 highest negative covariances (i.e. inverse relationships with the subject eigenvector). These
covariates premise an argument describing the nature of the subject eigenvector in practical
terms.

To further support to the identifying conclusion in this uniquely spatial survey context, we
calculate a “factor score” for each observation N by multiplying S by the transposed vector
k(λ), where k=1,. . . ,K, or the specific eigenvector associated with eigenvalue λ. The resulting
factor score vector can be mapped spatially since each observation is a Census Block Group
and compared with the identification conclusion by covariate assessment. If the authors are
comfortable identifying the latent contribution represented by the eigenvector with the highest
eigenvalue, the identification process moves on to the next highest eigenvalue and so on until
covariates and spatial maps are unable to support a clear identifying conclusion.

The factor scores for each Census Block Group, derived from all eigenvectors retained in R
are proposed exogenous measures of urban spatial structure. As is typical lexicology in PCA,
each retained eigenvector is referred to as a Principal Component or Factor, numbered from
highest eigenvalue to lowest eigenvalue. In this analysis Factor 1 is the eigenvector associated
with the largest eigenvalue.

Finally, PCA on the SLD was first run at the national scale, with all 220,653 U.S. CBGs in one
variance reduction model. In addition an independent PCA was evaluated using solely the Census
Block Groups in each U.S. Core Based Statistical Area (CBSA) - a common Census designation
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used for a metropolitan area. This latter strategy results in different covariance between each
latent factor and the underlying SLD metrics for that CBSA. Importantly, CBSA-scale PCA
analysis results in potentially different subjective interpretations of each latent factor in each
CBSA; for example, ”Factor 5” in the Atlanta CBSA PCA is not necessarily a comparable latent
measure of urban spatial structure as ”Factor 5” in the Seattle CBSA PCA.

0.2 Principal Component Analysis of the Smart Location Database - Results

After performing the national-scale and CBSA-scale PCA on the SLD, a noticable pattern
emerged in the interpretation of the latent factors of urban spatial structure. No matter the
scale, ”Factor 1” can always be interpreted as a continuous variable measuring hubs of commer-
cial activity; strong covariates were predominantly in the density dimension of the SLD. ”Factor
2” could always be interpreted as a continuous variable measuring exurban or urban fringe loca-
tion; strong covariates were always automobile ownership and the land use diversity dimension.
Figure 1 describes the raw SLD variables with the largest contribution to Factor 1 and Factor 2
in the national-scale PCA of all 90 SLD variables.

Fig. 1: Visualisation of the 20 strongest contributing variables to Factor 1 and Factor 2 (Dim1 and
Dim2 respectively) in the national-scale PCA. Results are nearly identical for every CBSA-scale
PCA. Variable definitions described at Ramsey and Bell (2014).

Beyond Factor 2, interpretation of additional latent variables occasionally vary by CBSA and
are not discussed in any further detail in this paper. However, Factors 3, 4 and 5 are included
in model results to demonstrate that there is marginal utility in considering additional latent
dimensions of urban spatial structure. But these additional latent measures must be interpreted
on a market-by-market basis; for example, Factors 3 and 4 often describe suburban space as
defined by transportation networks, the structure of which can vary from market-to-market.
Factor 5 at the national scale identified CBGs with concentrations of poverty, but this was not
consistent across all CBSAs. Thus for ease of interpretation, only Factor 1 (commercial activity
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hub) and Factor 2 (urban frings) will be discussed as their subjective definitions are transferable
across all markets.

Finally, although it has no effect on the conclusions of this research, the CBSA-scale PCA
Factors are used in all subsequent tests of the utility of these latent urban spatial structure
metrics in real estate market models. Comparison with national-scale PCA Factors reveals a
marginal increase in utility for CBSA market-specific definitions of Factor 1 and Factor 2. Tests
with national-scale PCA Factor 1 and 2 definitions produce similar results due to consistency of
the contributing SLD variables to Factor 1 and Factor 2 across all CBSAs.

For all observations in the property transaction database the location of the property trans-
acted results in a ”factor score” for each latent measure based on the CBG in which the property
sits. Descriptive statistics for the these extracted CBSA-scale PCA latent factors are shown in
Table 1. Means and standard deviations are provided for each property type. Just means are
provided for each CBSA. These factor scores are difficult to interpret in isolation, but they be-
have like an index: the mean of Factor 1 describes the mean index value of a continuous variable
representing commercial hubs (relative to other CBGs within the CBSA). Factor 2 describes the
mean index value of a continuous variable representing the urban fringe.

Insert Table 1 about here

A few important observations emerge in the descriptive tables. First, although the data was
normalized to mean zero and standard deviation of 1, the means for Factor 1, the commercial
activity factor, are well above 0 for each property product, indicating that real estate investment
tends to occur in CBGs with above-average commercial activity. Unsurprisingly, office properties
determined to be in a central business district exhibit the strongest signal for Factor 1. Second,
all are indistinguishable from zero statistically speaking; the standard deviation for each property
type exceeds the mean.

To better describe these factors, 2 shows a spatial representation of how Factor 1 and Factor
2 are continuous measures of urban spatial structure interpreted as commercial activity centers
and urban fringe respectively. Atlanta and Seattle are chosen as example urban areas featuring
polycentric form and geographic challenges to the concept of linear bid-rent models. Darker areas
in the Factor 1 maps (a and c) represent a larger degree of commercial activity in each CBG,
demonstrating that Atlanta is more polycentric than Seattle. Darker areas in the Factor 2 maps
(b and d) represent CBGs on the urban fringe, with lighter areas surrounding the commercial
activity centers. In combination CBGs can share characteristics that correlate with Factor 1
(activity center) and Factor 2 (fringe), resulting in a non-linear functional form of location
sensitivity to real estate pricing (a non-linear bid-rent function) or risk, as will be examined
here.

PCA Factors in Pricing and Risk Models

The first test of the efficacy of PCA factors as exogenous location controls is to use them as
variables of interest to describe spatial variance in office and retail asset pricing and risk. Unlike
housing transaction data, office and retail transactions are not as frequent, so sampling frames
must expand spatial and temporal boundaries to generate sufficient observations for statistical
efficiency. This expanded sampling frame adds additional variance that complicates hypotheses
testing and introduces the potential for type 1 statistical error as a result of endogeneity with
added spatial (or temporal) variance. Of interest here is whether the extracted latent urban form
metrics (PCA factors) can measure the relationship between urban spatial structure and prices
or risk.
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Fig. 2: Spatial representation of Factor 1 and Factor 2 ”factor scores” for each CBG in Atlanta
(a and c) and Seattle (b and d).

Notably, measurement of cap rates (net income yield at time of purchase) is not always
possible, as it requires both a transaction price and reliable (and consistent) estimate of net
income at the time of sale. Since the latter is less available than the former, there is more
research on commercial real estate pricing relative to research on risk, as measured by cap rates.
The ability to control for the spatial variance introduced when increasing cap rate observations
by adding additional urban markets (CBSAs) would be a valuable tool in the evaluation of
commercial real estate risk.

0.3 Modeling Specification

To examine the relationship between the PCA Factors and cap rates or prices, the generic
specification of a model estimated using generalised method of moments (GMM) is:

CapRateijt = β0 + β1
−−−→
Propi + βn

−→
F ni + εijt (2)
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The dependent variables will be either the transaction net income yield (cap rate), expressed
as a percentage, or natural log of price per square foot as the dependent variable.2 As only about
25% of observations include cap rates, all regressions are also run on the natural log of per square
foot sales price to evaluate the sensitivity of the PCA factors to measure location value when
the sample size is increased four-fold while maintaining the spatial (and temporal) variance of
the sampling frame.

Models are congruent in specification with traditional commercial real estate hedonic analyses

(Seiler and Walden, 2014; Gabe et al., 2021) where
−−−→
Propi is a vector of observed asset level

characteristics including size and age.
−→
N ii represents neighborhood characteristics not include in

the SLD data such as crime and education levels. Novel to this research is that
−→
F ni represents the

nth factor from the principal components generated at the CBSA scale from the SLD database
(described above).

These models are specified as observations of each building i, with random effects for each
year t, and market j. As specified, the models facilitate addressing the research questions rel-
ative to the two problems motivating the paper: (1) ease of measuring spatial characteristics
of non-linear bid-rent curves and 2) the potential for location value and price effects to be at-
tributed to and confounded by exogenous factors that are not spatially independent. Connecting
to the motivation and problems, creating Factors 1 and 2 addresses the first problem while their
integration into the GMM models allows testing of both problems one and two.

Regression Results

Table 2 shows a consistent increase in pricing and decrease in cap rates across all models for
Factor 1. Note that the scale of the cap rate regressions are expressed as 0 to 100. As evidence of
sample validity, the per square foot premiums and cap rate premiums have comparable results.
Model 1 is the reference or base model for comparative purposes.

Insert Table 2 about here

Model 2 in the sale price (LNPSF) model shows a sales premium of approximately 4.1%. The
comparable reduction in cap rate from Model 2 of the cap rate models is a nominal decrease of
0.37%. The sample mean cap rate of 6.68% would then be reduced to 6.31% resulting in a 5.86%
increase in price of the average property. While not identical, the comparable range is suggestive
of construct validity and the reliability of signals from the smaller cap rate sample.

Factor 1 and Factor 2, the two consistent latent spatial structure variables measuring com-
mercial activity and urban fringe respectively, reveal expected relationships between cap rates
(or prices) and location. The greater the intensity of commercial activity (larger Factor 1 score),
the lower the cap rate (less risk). As would be expected of a non-linear bid-rent model, the or-
thogonal Factor 2 exerts the opposite effect. Economically, the attraction to commercial activity
centres mean the sensitivity of cap rates (or prices) is greater for Factor 1, congruent with early
conceptual forms of linear bid-rent curves attracted to a central business district (Alonso, 1960).
Factor 2 exhibits a weak per square foot effect and no statistical significance in the cap rate
model. Given potentially disparate effects of the property types for this factor, the result here,
in a model where retail and office product is combined into one model, is expected.

Specific property type models break out the cap rate based findings for the Office and Retail
sectors separately. Models 1-5 in Table 3 show results for base runs including CBD controls all

2 Additional models using the difference between observed cap rates and the RCA Cap Rate Index for the
specific market were also estimated. Results converge.
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but Model 2. Models 6-8 and 9-11 show sub-sample results for the Office CBD and Suburban
only samples.

Insert Table 3 about here

In the base model (Model 1), control variables have expected levels of significance and effect,
a nominal 1.2% cap rate reduction, on average, for being located with the RCA boundaries of a
CBD. Model 2 estimates Factor 1 without an additional CBD control. Since Factor 1 and Factor
2 are normalized N(0,1) within each CBSA, the results indicate a 0.068% reduction for each
standard deviation from the mean CBSA factor score.

The CBSA mean of zero was estimated based on all Census Block Groups in the entire CBSA.
The mean CBD located office building Factor 1 score is 7.39 with a 7.60 standard deviation. This
suggests that the average CBD office is already over seven standard deviations from the CBSA
mean factor score and further exhibits rightward skew (CBD locations will generally contain
greater commercial activity). This implies the impact on the mean office building would be
7.39*.041 or a 0.50 cap rate reduction. A one standard deviation shift in the CBD sample, or
another 7.60 standard deviations from the mean of zero would exceed a full point, approaching
the CBD dummy variable estimation.

As one of the goals of the paper is to examine the marginal impact of Factors 1 and 2 beyond
traditional techniques, Models 3-5 include both Factor 1 and the CBD control. Model 3 shows a
0.033 cap rate reduction for Factor 1 along with a -0.973 reduction for traditional CBD location.
Note that the mean estimate for CBD independently from Model 1 is virtually identical. The
combined reduction in cap rate for the mean CBD located property would be 1.216 (0.033 Factor
1 * 7.39 mean + 0.973).

This suggests that Factor 1 does allow for increased pricing refinement beyond the simple
binary mean of the CBD dummy variable. The implication here is that by measuring the extent
to which any location expresses Factor 1 along the intensity spectrum (e.g., high to low eco-
nomic activity), the additional benefit of Factor 1 is that it can identify pricing nuance outside
traditional CBD boundaries.

Factor 2 exhibits a negative price impact (increasing cap rate). Since Factor 2 generally
references suburban and or residential factors, this negative price influence for office appears in
line with expectations.

Within the CBD only sample, Factor 1 shows a 0.016% decrease in cap rate per standard
deviation in the factor score, or about 0.118% reduction at the mean. Authors note that the
small sample size of 466 may reduce the practical applicability of this parameter estimate.

Unsurprisingly, the effect of Factor 1 is more pronounced in suburban buildings. Part of the
expected utility of this Factor would be to help describe and control for polycentricity in cities
with multiple commercial hubs or geographic constraints.

Easier interpretation of the the general effects of spatial location on office cap rates can be
seen in 3 (a and b), which maps the combined effect of Factor 1 and Factor 2 on office cap
rates in the sample markets of Atlanta and Seattle. These two maps are based on Model 4 in 3,
forecasting the average spatial cap rate effect for each Census Block Group. Of note is the visual
relationship between office cap rates and major transportation corridors; accessibility reduces
the risk of office investments.

Table 4 shows results for the retail only sample. Similar to the Office results, Models 1-5
include all retail property types. Models 6-9 show results for strip retail only.

Insert Table 4 about here

Model 2 shows an average reduction of 0.054 for retail cap rates on Factor 1. Since retail is
often located near areas of residential density, Factor 2 would be expected to positively impact
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Fig. 3: Spatial variance of cap rate reductions in office markets (a and b) and retail markets (c
and d) across Census Block Groups in Atlanta and Seattle. Darker areas indicate greater cap rate
reductions, i.e. less risk. Projection based on Model 4 in 3 and 4, the specification that includes
SLD Factors 1 and 2.

pricing. It does, with a 0.032 reduction in cap rate. When run concurrently with Factor 1 (Model
4), the effect of Factor 1 dominates and Factor 2 becomes statistically insignificant.

Modeling only strip retails reveals an increased importance of Factor 1 relative to mall retail.
Surprisingly, Factor 2 does not exhibit statistical significance.

3 (c and d) maps the spatial variance of retail cap rates in the sample markets of Atlanta
and Seattle using Model 4 in 4. Retail cap rates are relatively more sensitive to location than
office, with a much larger spread in each market. There are few CBGs where retail cap rates vary,
suggesting the agglomeration effects of retail attract customers (and capital) to concentrations
of retail property.

Together, the office and retail modelling results contribute to the debate about simplified mea-
surement of spatial characteristics of non-linear bid-rent curves and the potential for location
value and price effects to be attributed to and confounded by exogenous factors. The creation of
Factors 1 and 2 provides a relatively easy and quick pathway to capturing a range of spatial eco-
nomic relationships. Their significance in the regression models suggest utility independent from
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more traditional approaches where space and economic forces can be confounded when blended.
Here, variation in prices and cap rates is consistent across Factor 1 and 2 and across the two
asset classes. This suggests that the data reduction method and detailed micro-economic spatial
data help reduce spatial bias in small sample sizes, address missing variable bias endogeneity
concerns, and capture spatial economic relationships comparably to other methods.

But how does this method compare with traditional methods of spatial effects control? Out
of sample testing on models of the housing market, where sample sizes are much larger to enable
micro-location control, helps to describe their econometric utility of the PCA Factors further.

Out of Sample Testing: Single Family Market

The single family (SF) housing market is much larger in terms of transactions than commercial
asset classes. Also, SF land uses often make up the vast majority of major metropolitan areas,
especially those in the southern and western United States. As the most voluminous and spatially
expansive of the real estate asset classes, the paper tests the PCA generated Factors 1 and 2 to
discern both their impacts on SF home prices as well as their efficacy in improving pricing model
predictive performance. This out of sample testing is useful as it provides signals against which
the regression results above can be triangulated–both for construct validity and convergence.

Data for this analysis comes from the King County, Washington Tax Assessor3. King County
is the home to Seattle and Bellevue and their immediate suburbs and is the heart of the larger
Seattle-Tacoma-Everett-Bellevue Metropolitan Area. These data include all single family home
sales – detached and townhomes – in the county over the January 2017 through December 2019
period, over 76,000 observations in total. Filters are applied to remove outlying observations.

Two different classes of models are used to test the impact of the SLD factors on values in the
residential market – standard ordinary least squares (OLS) and random forest. Each model type
uses the same set of control features, with the two SLD Factors being the variables of interest.
Control variables are home size (in sq.ft), year built, home quality, home condition, bedroom
count, bathroom count, lot size (logged), waterfront (binary) and combined view score (0 - 16).
Time is controlled for by monthly dummy variables. The log of the home sale price is regressed
against these variables along with SLD Factor 1 and Factor 2. Again, like the commercial models,
the additional Factors 3-5 are included for illustrative purposes.

The linear model produces easily interpretable coefficient values, shown below in Table 5.
The random forest model (RFM) does not produce such easily interpreted estimates of marginal
contributions. Using a form of model agnostic interpretability – a partial dependence plot –
the RFM is able to visualize the impact that the SLD variables have on predicted home values
(Figure 4) and compare these against the linear coefficients from Table 5.

These two models suggest that Factors 1 and 2 have positive impacts on home prices, slighly
different than was observed in office and retail markets where Factor 1 (commercial activity
center) was positive and Factor 2 (urban fringe) negative. Additionally, across the model classes
– OLS and random forest – the directionality of the impacts are the same, though the magnitude
(the shape of the curves in Figure 4 does differ. Particularly, there is a smaller impact of Factor
2 when used in a more flexible random forest model.

Predictive Ability

Next, models examine the ability of the SLD features to properly control for spatial variation
in the data. We evaluate this ability by looking into the model’s predictive performance – its

3 Data available at: www.github.com/andykrause/kingCoData

https://www.github.com/andykrause/kingCoData
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Fig. 4: Impact of SLD variables on home prices

ability to predict home prices for properties that are not in the dataset itself. To generate an
out-of-sample test, an out of time approach is employed using observed transactions from the
first 35 months of the data to predict the values in the final month (December 2019).

Seven different model specifications are used in order to identify the marginal impact of the
SLD variables as spatial controls against other commonly used approaches to represent spatial
features in house pricing models. These are:

1. Baseline: No Spatial Variables
2. Submarket: Use of fixed effects submarket binary variables
3. XY: Use of latitude, longitude and related transforms
4. SLD: Use of SLD variables
5. SLD + Submarket
6. SLD + XY
7. All: All the above

Table 6 shows results. In the linear models (left hand column), the SLD features do offer
improved accuracy (Median Absolute Percentage Error, MdAPE) from the baseline model that
includes no spatial variables. However, the two other approaches – submarket fixed effects and
lat/long transforms – greatly outperform the SLD features. Adding the SLD features to these
standard approaches results in very little improvement. This result is very similar to the utility
of mobile phone tracking data as a novel location control in Bourassa et al. (2020).

For the random forest models, there are different results. The SLD feature offer a considerable
improvement over the non-spatially controlled baseline model and also provide a 10% relative
accuracy improvement over submarket fixed effects. Due to the flexibility of random forest mod-
els treatment of features like latitude and longitude, these standard X,Y spatial variables do
outperform both the SLD and the submarket approaches. Also of note is that combining SLD
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and submarket variables produces an accuracy level very similar to that of the X,Y model, sug-
gest that the flexibility of the random forest model does allow for some complementary effects
between the two. Results here help frame the problems motivating the paper and the potential
for the techniques to address them.

Limitations

While the paper demonstrates Factors 1 and 2 have utility to describe urban spatial structure,
these factors do not always add new statistical or economic information. For example in the
single-family fixed effects specification, model fit does not always improve because market dummy
variables explain much of the variance (and themselves stand in as a partial proxy for urban form).

The SLD Factors provide valuable information that isolates and extracts locational value
from other exogenous variables influenced by location. In large-sample size contexts, traditional
methods, such as spatial fixed effects, are comparable, and perhaps superior, particularly in linear
modelling specifications. One potential area for future research would be to broaden the factor
estimation from CBG to tract or some distance weighted measure of nearby CBGs. A mall is
likely to be its own CBG and thus not capture the impact of nearby residential in the current
modeling strategy.

The results and their limitations are consistent with both Glaeser et al. (2018b) and Bourassa
et al. (2020). Big data provides opportunities for innovations in real estate and related financial
economic analyses. It offers new pathways for theory to evolve, hypotheses to be tested, and
signal to be split from what was once noise. In some instances, this allows for the questioning
of received wisdom about human defined spatial boundaries–questions that spill forward into
algorithmic fairness and other dimensions of data-defined solution alternatives where a priori
defined models have dominated. Though the results here do not speak to this issue directly, they
suggest questions that investors and researchers might want to consider in the co-production of
future real estate knowledge.

Conclusions

This paper was motivated by two problems common to real estate analyses that include urban
spatial structure–easy measurement of spatial characteristics of non-linear bid-rent curves and
the potential for location value and price effects to be attributed to and confounded by exogenous
factors–especially treatments without random spatial distributions. Motivated by these problems
and the ever expanding universe of micro-economic data, the paper explores the use of Principal
Component Analysis (PCA) to extract two latent factors of real estate location from 90 measures
of urban form by the Environmental Protection Agency at the Census Block Group scale.

These latent variables describe, in continuous functional form, the urban and exurban inten-
sity of each CBG in each CBSA. These two factors represent the utility functions underlying
bid-rent curves for location value within an urban system. They provide a simplified and al-
ternative methodological pathway to other econometric and geospatial advances such as fixed
effects and autocorrelation techniques. Factors 1 and 2 also create the potential to evaluate, at
a smaller scale and on a more detailed basis, the relationships between urban spatial attributes
and prices/capitalization rates than current practice, which largely consists subjective defini-
tions of submarkets or definitions of Central Business Districts. In this context, Factors 1 and 2
were incorporated into hedonic regression models analyzing a sample of transaction prices and
capitalization rates from Real Capital Analytics detailing office and retail assets in more than
35 U.S. Core Based Statistical Areas. The results from these models and out of sample tests
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indicates two contributions literature and practice. The first contribution is a proof of concept.
Models indicate that across each of the asset classes - housing, office, and retail - both transaction
prices and capitalization rates are both statistically and economically sensitive to variation in
the continuous form specifications of each PCA factor. This leads to market structure insights,
notably that retail risk is more location-sensitive than office, which has less spatial heterogene-
ity. Accuracy of predictions using PCA Factors in housing price models show similarities with
current techniques of spatial control.

Practically, this first contribution means that real estate professionals can evaluate spatial
bias in capital allocation decisions. With an exogenous and non-linear measure of urban spatial
structure, savvy investors can investigate deviations from the expected spatial risk premium.
For example cap rates in a CBG higher than the spatial model would predict suggest other
exogenous or market effects that are not location-based, such as socioeconomic factors or industry
agglomerations, are increasing perceived risk. Or such deviation could reflect a pricing inefficiency
caused by imperfect information on urban form productivity.

Second, the use of latent PCA factors of urban spatial structure ”big data” can control for
spatial bias in real estate models similar to current methods but the exogenous nature of these
latent factors fills a niche to control for spatial bias in models with small sample sizes. While
out-of-sample forecasting accuracy suggests these factors are, at best, comparable to traditional
large-sample size methods of location control (i.e. submarket fixed effects), the office cap rate
models demonstrated that these factors improve on existing location controls for small-sample
sizes, such as distance-to-CBD measures.

Practically, this second contribution opens up the potential to disentangle spatial endogeneity
in contexts, like cap rate models, where large sample sizes are not possible, or when treatments
of interest are not distributed spatially at random. For example, health and wellness building
certifications, like the WELL building standard, are only featured on a small fraction of assets
traded in a market in any given period; to evaluate the effect of such treatment on prices, the
sampling frame must expand spatially (and temporally), introducing variance that may correlate
with the treatment and thus produce Type 1 error through spaital endogeneity. An exogenous
measure to control for the introduced spatial variance could theoretically reduce probability of
a false positive signal for the subject treatment.

Naturally, as a step forward, the results raise a useful set of questions that future research
might examine–questions about a priori defined rules within spatial analysis, their application
to the diverse landscape of commercial real estate, and the potential (and attendant issues) of
algorithmic or missing variable bias.
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Table 1: Descriptive. Standard deviation for property types are shown below the mean. Only
means are shown for CBSA for brevity.

Factor

Variable N 1 2 3 4 5 Age Sale
PSF

Sale Price
(000)

Square
Ft (000)

All Property 40,871 1.424 0.801 -0.209 -0.116 -0.134 35 266 15,739 85
2.870 2.136 2.656 1.652 3.314 27 381 55,318 157

Flex 4,247 1.370 0.798 -0.255 -0.173 -0.124 32 142 8,946 78
1.934 1.996 2.160 1.749 3.627 19 135 17,689 117

Mall & Other 6,810 1.338 0.595 0.243 -0.076 -0.033 45 575 12,088 35
2.707 1.854 2.371 1.339 2.582 38 728 51,195 109

Office - CBD 1,920 7.386 3.655 -4.021 0.177 -1.240 65 484 85,051 190
7.601 5.529 7.614 2.700 6.840 37 454 198,105 296

Office - Sub 10,428 1.361 0.719 -0.162 -0.064 0.034 31 232 17,718 86
1.996 1.701 2.057 1.508 2.911 20 194 39,323 145

Strip 7,271 0.487 0.546 0.402 0.064 0.038 26 242 10,973 60
1.202 1.304 1.121 1.346 1.690 19 190 17,445 77

Warehouse 10,195 1.115 0.668 -0.259 -0.354 -0.290 37 122 9,330 117
1.780 1.665 1.818 1.839 3.777 22 136 14,377 194

Atlanta 1,334 0.828 0.990 0.245 -0.190 0.831 26 153 13,700 119
Austin 492 1.300 0.947 0.388 0.088 -0.490 25 264 17,338 77
Baltimore 527 0.621 2.528 -1.054 -0.336 -2.025 34 158 12,522 105
Boston Metro 1,258 0.745 1.584 0.107 -0.307 0.729 46 244 23,704 98
Charlotte 557 0.962 1.020 -0.125 -0.213 0.923 24 181 13,832 107
Chicago 2,259 1.585 1.435 -0.283 -0.371 0.818 35 183 15,876 119
Cincinnati 239 0.971 1.799 -0.230 0.020 -1.923 27 118 10,867 130
Columbus 338 0.842 1.482 0.017 0.121 -0.328 25 114 11,101 168
DC Metro 1,354 1.486 1.536 -0.595 -0.028 -0.793 36 332 27,537 97
Dallas 1,934 1.601 0.987 -0.310 -0.398 1.817 26 186 13,840 106
Denver 1,032 1.361 0.990 -0.130 -0.446 -0.243 30 205 14,198 79
Detroit 589 1.582 0.922 0.128 -0.693 1.656 30 129 8,855 107
Honolulu 121 1.194 -0.827 0.571 0.003 0.416 39 479 17,421 51
Houston 1,289 1.042 0.790 0.130 0.171 -0.088 24 178 13,928 97
Indianapolis 425 0.923 1.454 -0.028 -0.009 0.535 27 129 9,433 123
Jacksonville 238 1.104 1.556 0.599 -0.104 -1.352 24 173 12,229 138
Kansas City 360 1.495 1.350 -1.143 -0.253 -2.232 32 162 13,613 119
LA Metro 6,352 1.801 -0.636 -0.647 -0.105 -1.321 38 302 12,656 59
Las Vegas 639 1.550 -0.595 1.091 -0.184 0.723 18 242 16,134 69
Memphis 270 0.908 1.696 0.145 -0.520 3.009 26 119 8,868 190
Miami/So Fla 1,745 1.597 -0.827 -0.692 0.438 -1.502 33 287 13,343 66
Minneapolis 733 0.897 1.690 -0.067 -0.372 -1.511 33 153 11,627 97
NYC Metro 4,279 1.453 1.060 -0.286 -0.201 0.592 61 572 25,719 68
Nashville 456 1.603 1.522 0.508 -0.106 0.624 31 201 11,575 101
Norfolk 203 2.193 1.098 -0.547 0.212 -2.290 26 147 9,575 91
Orlando 578 1.138 1.274 -0.271 -0.054 -0.582 25 189 11,164 89
Philly Metro 1,058 -0.447 2.233 -0.176 -0.346 1.575 37 172 13,732 105
Phoenix 1,415 1.404 1.035 -0.291 0.102 -0.697 22 183 11,972 78
Pittsburgh 170 1.229 1.794 -0.195 0.011 -0.582 31 174 17,546 145
Portland 540 1.683 1.122 0.105 -0.202 1.329 40 194 13,176 78
Raleigh/Durham 385 1.191 1.133 0.072 0.205 0.257 24 206 12,848 84
Richmond 257 1.584 1.290 -0.075 0.183 -1.361 27 122 8,324 91
SF Metro 2,601 1.820 0.640 -0.697 0.268 -0.803 45 355 21,114 68
Sacramento 664 1.525 1.100 -0.357 0.158 1.214 28 175 8,403 67
Salt Lake City 406 1.787 1.329 -1.169 0.705 -1.669 28 142 10,837 78
San Antonio 427 0.975 1.027 0.155 0.252 -0.540 23 188 9,960 72
San Diego 1,026 2.309 1.618 1.954 -0.750 1.694 31 272 11,790 49
Seattle 1,158 1.452 0.704 0.766 -0.255 -0.901 36 285 20,324 71
St Louis 601 1.554 1.567 -0.245 0.034 -2.391 31 119 8,425 104
Tampa 562 1.609 1.116 -0.368 -0.156 0.944 28 181 12,805 87
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Table 2: All Property Type Hedonic Regression Estimates:
Each model shows results from a GMM mixed effect regression with a dependent variable of
the natural log of average rent PSF or a capitalization rate (*100) respectively. Factors are by
CBSA and normalized with a mean zero and standard deviation of one. Warehouse is the omitted
property type category. All models include mixed effect controls for CBSA and year. ***, ** and
* indicate significance at 99%. 95% and 90% levels, respectively. Standard errors shown beneath
estimate are clustered at market level.

Dependent LNPSF Cap Rate * 100

Variable Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

Intercept 7.951 8.046 8.048 8.029 5.401 5.283 5.281 5.285
181.081 185.679 185.777 185.685 27.792 27.176 27.16 27.17

lnsf -0.254*** -0.266*** -0.265*** -0.264*** 0.024* 0.036*** 0.036*** 0.037***
-88.838 -93.79 -93.591 -93.458 1.794 2.725 2.692 2.731

lnage -0.385*** -0.367*** -0.366*** -0.360*** 0.492*** 0.480*** 0.479*** 0.475***
-29.15 -28.158 -28.09 -27.739 9.814 9.589 9.581 9.479

lnage2 0.048*** 0.041*** 0.041*** 0.039*** -0.081*** -0.075*** -0.075*** -0.074***
20.093 17.543 17.355 16.495 -8.039 -7.523 -7.495 -7.311

Factor 1 0.041*** 0.044*** 0.058*** -0.037*** -0.040*** -0.046***
34.374 33.176 34.407 -7.189 -6.84 -6.227

Factor 2 -0.009*** -0.007*** 0.008 0.009
-5.026 -3.785 1.024 1.125

Factor 3 0.021*** -0.006
12.383 -0.747

Factor 4 -0.001 0.007
-0.644 0.813

Factor 5 0.002* -0.007
1.755 -1.377

Strip 0.634*** 0.647*** 0.647*** 0.642*** 0.876*** 0.875*** 0.876*** 0.872***
65.648 68.004 67.994 67.438 17.964 17.996 18.004 17.875

Flex 0.150*** 0.134*** 0.134*** 0.130*** 0.784*** 0.806*** 0.806*** 0.807***
13.514 12.222 12.22 11.907 11.974 12.323 12.321 12.33

Mall & Other 0.964*** 0.934*** 0.933*** 0.921*** -0.059 -0.029 -0.027 -0.026
91.747 89.929 89.816 88.403 -1.05 -0.51 -0.48 -0.468

Office - CBD 1.229*** 0.971*** 0.977*** 0.968*** -0.451*** -0.138 -0.147* -0.152*
79.881 57.406 57.637 56.901 -6.253 -1.642 -1.735 -1.773

Office - Sub 0.608*** 0.589*** 0.588*** 0.581*** 0.894*** 0.925*** 0.927*** 0.927***
70.955 69.613 69.455 68.564 19.16 19.804 19.829 19.759

AIC 67,245 66,084 66,070 65,920 26,873 27,997 28,004 28,024
SIC 67,241 66,080 66,066 65,916 26,871 27,993 28,000 28,020
Model N 38,198 38,195 38,195 38,195 8,192 8,190 8,190 8,190
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Table 3: Office Hedonic Regression Estimates by Cap Rate:
Each model shows results from a GMM mixed effect regression with a dependent variable of the capitalization rate (*100). Models
1-5 include all office observations, Models 6-8 include only those in a CBD and Models 9-11 only suburban. Factors are by CBSA and
normalized with a mean zero and standard deviation of one. All models include mixed effect controls for CBSA and year. ***, ** and *
indicate significance at 99%. 95% and 90% levels, respectively. Standard errors shown beneath estimate are clustered at market level.

CBD Only Suburban Only

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11

Intercept 7.042 7.038 6.802 6.797 6.799 8.741 8.721 8.565 6.224 6.215 6.173
19.892 19.441 19.117 19.11 19.101 9.213 9.097 8.637 15.952 15.916 15.77

lnsf -0.061** -0.071*** -0.035 -0.035 -0.035 -0.178*** -0.178*** -0.162*** 0.01 0.01 0.012
-2.552 -2.871 -1.42 -1.43 -1.407 -3.427 -3.413 -3.044 0.375 0.354 0.427

lnage 0.772*** 1.041*** 0.772*** 0.771*** 0.763*** 0.286 0.287 0.304 0.868*** 0.869*** 0.863***
7.011 9.592 7.041 7.038 6.954 1.346 1.347 1.424 6.755 6.762 6.715

lnage2 -0.126*** -0.184*** -0.124*** -0.124*** -0.121*** -0.049 -0.049 -0.05 -0.142*** -0.142*** -0.139***
-5.973 -8.896 -5.887 -5.87 -5.741 -1.337 -1.335 -1.358 -5.461 -5.463 -5.358

Factor 1 -0.068*** -0.033*** -0.041*** -0.050*** -0.016** -0.015 -0.03 -0.082*** -0.083*** -0.086***
-11.608 -4.879 -5.139 -4.513 -2.299 -1.247 -1.349 -5.208 -5.221 -4.943

Factor 2 0.020* 0.020* -0.003 -0.006 0.011 0.018
1.907 1.759 -0.157 -0.327 0.563 0.827

Factor 3 -0.015 -0.006 0.001
-1.252 -0.248 0.086

Factor 4 0.016 -0.032 0.053***
1.055 -1.336 2.634

Factor 5 -0.001 -0.005 0.011
-0.154 -0.496 0.935

CBD -1.216*** -0.973*** -0.992*** -1.008***
-14.723 -10.121 -10.27 -10.081

AIC 10,341 10,319 10,423 10,326 10,329 2,951 2,957 2,973 8,515 8,520 8,533
SIC 10,335 10,313 10,417 10,320 10,323 2,945 2,951 2,967 8,511 8,516 8,529
Model N 2,621 2,621 2,621 2,621 2,621 466 466 466 2,155 2,155 2,155
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Table 4: Retail Hedonic Regression Estimates by Cap Rate:
Each model shows results from a GMM mixed effect regression with a dependent variable of the capitalization rate (*100). Models 1-5
include all retail observations, Models 6-10 include only those defined as strip mall retail. Factors are by CBSA and normalized with a
mean zero and standard deviation of one. All models include mixed effect controls for CBSA and year. ***, ** and * indicate significance
at 99%. 95% and 90% levels, respectively. Standard errors shown beneath estimate are clustered at market level.

Strip Retail Only

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

Intercept 4.403 4.409 4.392 4.406 4.405 6.032 6.042 6.035 6.046 6.058
20.168 20.255 20.124 20.237 20.204 20.784 20.869 20.756 20.852 20.873

lnsf 0.161*** 0.165*** 0.165*** 0.167*** 0.167*** 0.054** 0.057** 0.055** 0.057** 0.059**
8.959 9.223 9.145 9.251 9.271 2.261 2.375 2.278 2.386 2.438

lnage 0.450*** 0.421*** 0.447*** 0.421*** 0.419*** 0.585*** 0.577*** 0.585*** 0.577*** 0.566***
7.855 7.327 7.793 7.325 7.285 6.942 6.858 6.935 6.854 6.707

lnage2 -0.086*** -0.076*** -0.086*** -0.077*** -0.076*** -0.088*** -0.084*** -0.088*** -0.085*** -0.081***
-7.312 -6.408 -7.277 -6.428 -6.346 -4.93 -4.742 -4.937 -4.749 -4.533

Factor 1 -0.054*** -0.051*** -0.056*** -0.077*** -0.077*** -0.085***
-5.023 -4.504 -4.311 -3.655 -3.654 -3.81

Factor 2 -0.032** -0.011 -0.01 -0.006 -0.006 -0.01
-2.337 -0.737 -0.681 -0.289 -0.291 -0.453

Factor 3 -0.003 -0.034
-0.242 -1.348

Factor 4 0.003 0.02
0.203 1.184

Factor 5 -0.01 0.008
-0.954 0.485

Strip 0.792*** 0.764*** 0.789*** 0.764*** 0.762***
19.245 18.446 19.19 18.456 18.363

AIC 11,866 11,843 11,862 11,849 11,869 8,003 7,142 7,155 7,148 7,164
SIC 11,864 11,841 11,860 11,847 11,867 7,999 7,138 7,151 7,144 7,160
Model N 3,832 3,830 3,830 3,830 3,830 2,273 2,272 2,272 2,272 2,272
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Table 5: Single Family Regression Estimates. This table shows results of the Factors on King
County Washington single family home sales from January 2017 through December 2019.

Estimate Std. Error t value Pr(>|t|)
SLD 1 0.0415 0.0020 20.36 0.0000
SLD 2 0.0973 0.0021 47.43 0.0000
SLD 3 -0.0938 0.0016 -58.78 0.0000
SLD 4 0.0097 0.0013 7.27 0.0000
SLD 5 -0.0729 0.0013 -56.41 0.0000
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Table 6: Single Family Housing Random Forest Models. This table compares results from the
random forest models to the ordinary least squares models.

spec OLS Random Forest
1 base 0.20 0.18
2 subm 0.13 0.10
3 xy 0.15 0.08
4 sld 0.19 0.09
5 sld+subm 0.13 0.09
6 sld+xy 0.15 0.08
7 sld + xy + subm 0.13 0.08
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Appendix

Table 7: Five “D” Descriptive Statistics:

Variable Source Definition

Density CBG Residential EPA SLD Gross residential density (HU/acre) on unprotected land
Density Emp Retail 8 EPA SLD Gross retail (8-tier) employment density (jobs/acre) on

unprotected land
Density Emp Office 8 EPA SLD Gross office (8-tier) employment density (jobs/acre) on

unprotected land
Density Emp Ind 8 EPA SLD Gross industrial (8-tier) employment density (jobs/acre)

on unprotected land
Density Emp Service 8 EPA SLD Gross service (8-tier) employment density (jobs/acre) on

unprotected land
Density Emp Ent 8 EPA SLD Gross entertainment (8-tier) employment density

(jobs/acre) on unprotected land
Density Emp Edu 8 EPA SLD Gross education(8-tier) employment density (jobs/acre)

on unprotected land
Density Emp Health 8 EPA SLD Gross health care (8-tier) employment density (jobs/acre)

on unprotected land
Density Emp Public 8 EPA SLD Gross pu8blic (8-tier) employment density (jobs/acre) on

unprotected land
Design CBG AutoLink EPA SLD Network density in terms of facility miles of auto-oriented

links per square mile
Design CBG MultiLinks EPA SLD Network density in terms of facility miles of multi-modal

links per square mile
Design CBG PedestrianLink EPA SLD Network density in terms of facility miles of pedestrian-

oriented links per square mile
Design CBG IntersectionWeighted EPA SLD Street intersection density (weighted, auto-oriented inter-

sections eliminated)
Design CBG AutoInstersection PSM EPA SLD Intersection density in terms of auto-oriented intersections

per square mile
Design CBG Multi3Leg PSM EPA SLD Intersection density in terms of multi-modal intersections

having three legs per square mile
Design CBG Multi4Leg PSM EPA SLD Intersection density in terms of multi-modal intersections

having four or more legs per square mile
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Variable Source Definition

Design CBG Ped3Leg PSM EPA SLD Intersection density in terms of pedestrian-oriented inter-
sections having three legs per square mile

Design CBG Ped4Leg PSM EPA SLD Intersection density in terms of pedestrian-oriented inter-
sections having four or more legs per square mile

Design CBG Park GIS Euclidean distance to nearest park polygon edge, derived
using Near tool in ArcGIS

Design Apartment ParkAccess CDC *apartment data only. CDC-based park accessibility score.
Processed with Spatial Join function in ArcGIS.

Destination Emp Bike ACS Census MEANS OF TRANSPORTATION TO WORK: Bicycle:
Workers 16 years and over – (Estimate)

Destination Emp Walk ACS Census MEANS OF TRANSPORTATION TO WORK: Walked:
Workers 16 years and over – (Estimate)

Destination CBG Auto Jobs45Min EPA SLD Jobs within 45 minutes auto travel time, timedecay (net-
work travel time) weighted

Destination CBG RegAccess Auto EPA SLD Proportional Accessibility to Regional Destinations -
Auto: Working age population accessibility expressed as a
ratio of total CBSA accessibility

Destination CBG RegCntrlty Auto EPA SLD Regional Centrality Index – Auto: CBG D5ce score rela-
tive to max CBSA D5ce score

Destination CBG Walkability EPA Index from National Walkability data
Destination Emp 45Minsplus ACS Census Derived from US Census Bureau’s ACS data for all com-

mute trips 45 minutes or longer in temporal duration
Destination Emp 30 45Mins ACS Census Derived from US Census Bureau’s ACS data for all com-

mute trips of temporal duration between 30 and 45 min-
utes

Destination Emp 10 30Mins ACS Census Derived from US Census Bureau’s ACS data for all com-
mute trips between 10 and 30 minutes in temporal dura-
tion

Destination Emp 10Mins ACS Census Derived from US Census Bureau’s ACS data for all com-
mute trips up to 10 minutes in temporal duration

Distance Emp Trnst QtrMile EPA SLD Proportion of CBG employment within 1/4 mile of fixed-
guideway transit stop

Distance Emp Trnst HalfMile EPA SLD Proportion of CBG employment within 1/2 mile of fixed-
guideway transit stop

Distance CBG TrnstFreq PSM EPA SLD Aggregate frequency of transit service (D4c) per square
mile

Diversity CBG Edu College Some ACS Census EDUCATIONAL ATTAINMENT FOR THE POPULA-
TION 25 YEARS AND OVER: Some college, 1 or more
years, no degree: Population 25 years and over – (Esti-
mate)

Diversity CBG Edu College Trade ACS Census EDUCATIONAL ATTAINMENT FOR THE POPULA-
TION 25 YEARS AND OVER: Professional school de-
gree: Population 25 years and over – (Estimate)

Diversity CBG Edu Bach Assoc ACS Census Derived from US Census Bureau’s ACS data for bachelor’s
and associates degrees received.

Diversity CBG Edu Graduate ACS Census Derived from US Census Bureau’s ACS data for graduate
degrees received.

Diversity CBG Pop Mean Income ACS Census HOUSEHOLD INCOME IN THE PAST 12 MONTHS
(IN 2015 INFLATION-ADJUSTED DOLLARS): Total:
Households – (Estimate)

Diversity CBG Owner Occupied ACS Census TENURE: Owner occupied: Occupied housing units – (Es-
timate)

Diversity CBG PercentLowWage EPA SLD % LowWageWk of total #workers in a CBG (home loca-
tion), 2010

Diversity Emp JobsPerHousehold EPA SLD Jobs per household
Diversity Emp Entropy 8 EPA SLD 8-tier employment entropy (denominator set to observed

employment types in the CBG)
Diversity CBG TripEquilibrium EPA SLD Trip productions and trip attractions equilibrium index;

the closer to one, the more balanced the trip making
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Variable Source Definition

Diversity Region Emp Diversity EPA SLD Regional Diversity. Standard calculation based on popu-
lation and total employment: Deviation of CBG ratio of
jobs/pop from regional average ratio of jobs/pop

Diversity Region Emp WkrsPerJob EPA SLD Household Workers per Job, as compared to the region:
Deviation of CBG ratio of household workers/job from
regional average ratio of household workers/job

Diversity Emp WorkersPerJob EPA SLD Household Workers per Job, by CBG
Diversity Emp Equilibrium EPA SLD Household Workers per Job Equilibrium Index; the closer

to one the more balanced the resident workers and jobs in
the CBG.

Notes: This table identifies the source and brief definition of the five “D,” Density, Design, Destination
Accessibility, Distance to Transit and Diversity, variables used in this analysis.


