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LEVERED EQUITY RETURNS IN THE PRESENCE OF RISKY DEBT: 
AN APPLICATION TO PRIVATE REAL ESTATE 

Using a simple reduced-form model to approximate the pricing of risky debt, this article focuses on 
three aspects of levered equity returns when investing in private commercial real estate: First, the 
positive relationship between the project’s leverage ratio and the costs of mortgage-loan borrowing 
creates a concave risk/return continuum for levered equity investors. The lender’s pricing of risky 
debt is such that the equilibrium return on levered equity asymptotically reaches a maximum; while 
additional borrowing increases the expected return on equity, it only marginally does so. Second, the 
law of one price suggests that this curvilinear continuum represents the basis on which higher-
risk/higher-return investments ought to be measured – as opposed to the more widely theorized 
linear relationship (which assumes constant borrowing costs). Third and when considering delegated 
investment management, additional borrowing linearly (or nearly so) increases the expected value of 
the sponsor’s (or general partner’s) promoted interest, which directly reduces the expected return of 
the investor’s (or limited partner’s) net return, creating a maximum leverage ratio for the investor 
which is less than that of the fund’s. In almost all cases, this reduction in the investor’s (net) return 
leads to an optimal leverage ratio well below the maximum available. All three of these impacts are 
attenuated at the highest leverage ratios. The balance of this paper examines these impacts.  

 
I.  The Pricing of Risky Debt 
Given the prevalence with which financial leverage is used in private (and public) real estate 
investing, understanding the impacts of such leverage on the risk/return characteristics of levered 
equity is critical. This article focuses on the use of “risky” debt. Moreover, this article seeks to 
endogenously incorporate the cost of such debt when examining levered returns. It is well accepted 
both in theory and practice that the risk structure of interest rates (i.e., the “credit spread”) 
geometrically increases the cost of indebtedness as leverage increases (i.e., interest rates are 
curvilinear (and convex) holding all other factors constant).1 The commercial mortgage lender’s 
instrument is often viewed as providing the (non-recourse) borrower with a put option2 and the 
estimated pricing of this put option naturally leads to an application of the contingent-claims 
approach (e.g., see Titman and Torous (1989) with regard to commercial mortgage debt). However, 

                                                 
1 One exception is the FHA/HUD lending program (e.g., §221(d)(4), §223(a)(7) and §223(f)) which does not vary the 
interest rate either by the leverage ratio or by asset/borrower quality. As a result, the FHA/HUD lending program 
suffers two main effects: adverse selection and excessive leverage. See Pagliari (2012). 
 
2 The borrower’s ability to “hand back the keys” without incurring further liability is a put option granted to the non-
recourse borrower by the lender in return for a higher interest rate than would otherwise be the case. That is, the lender’s 
payoff at loan maturity (T ) – assuming no earlier default – equals the minimum of the asset’s value (AT) and the loan’s 
book balance (DT). In the parlance of option pricing, this payoff amount is often written as min(AT,DT), which is 
equivalent to DT  – max(DT – AT,0); this last term signifies the borrower’s put option. Sundaresan (2013) provides an 
extensive survey of the literature relating to the Merton (1974) model and the firm’s capital structure. 
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the contingent-claims approach, as initiated by Black and Scholes (1973) and Merton (1974), fails to 
fit the conditions of private borrowings in three material respects: 3 

1. The perfect, costless and continuously available hedges – such that the risk-free portfolio can be 
replicated – found (or, at least, nearly so) in the public markets are not found in the private 
markets. As such, the no-arbitrage arguments used to price risky debt fail to hold. 
 

2. While the risk/return performance of the underlying security is exogenous to the efforts of the 
option holder in the public marker, that performance is endogenous in the private market (i.e., 
the borrower’s efforts and risk-taking effect the performance of the collateral). Therefore, the 
issues of “financial distress” (i.e., not only the deadweight costs of bankruptcy, but also the issues 
of effort, “risk-shifting,” “asset substitution,” etc.4

 ) are particularly problematic.5 Consequently, 
the lender sets some upper limit on the amount of permitted leverage which is well below the 
near 100% contemplated (in the limit) in Merton (1974). While it is possible that an estimate of 
these costs is incorporated into an option-pricing exercise, the imprecision of the estimate belies 
the exactitude of the option-pricing exercise. 
 

3. In a bankruptcy/foreclosure proceeding, the lender’s claim may be restructured by the decree of 
the bankruptcy judge. This “cram down” (which may involve a reduction in the interest rate, a 
lengthening of the amortization schedule, an extension of the loan’s maturity date, etc.) may 
severely and adversely impact the fair market value of the lender’s claim. This external influence 
is altogether different from the environment of public-market options – in which, there is no 
restructuring of the claim upon exercising the option.  

Moreover, it is well known that the Merton (1974) model tends to understate actual credit spreads 
for corporate bonds (e.g., see: Huang and Huang (2012)). Culp, Nozawa and Veronesi (2018) indicate 
that a risk premium for tail and idiosyncratic (asset) risks is the primary determinant of this 
understatement and debunk several other reasons (e.g., illiquidity, ruthless corporate defaults, large 
bankruptcy costs, asymmetric information, etc.) for this understatement. Therefore, rather than 

                                                 
3 Additionally, neither Merton (1974) nor this paper pay sufficient attention to the path-dependent nature of these loans. 
In order for the borrower to default upon the mortgage loan, two conditions must be satisfied: a) the loan’s debt service 
exceeds the property’s cash flow (and the owner is unwilling/unable to fund the difference) and b) the loan balance 
exceeds the property’s fair market value (less transaction costs). Modeling these compound options is complicated by the 
autoregressive nature of private-market asset returns and the specific covenants (e.g., amortizing v. interest-only) of the 
mortgage loan.  
 
4 It is quite possible that the borrower’s view of financial distress is broader than the lender’s. For the borrower, distress 
may include the need to issue additional equity which is dilutive to the initial equity in order to recapitalize a poorly 
performing asset. 
 
5 Holmstrom and Tirole (1997) point out that a credit crunch hits the poorly capitalized firm the hardest. This heightens 
the lender’s attention to the maximum leverage ratio. 
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employing the option-pricing apparatus, let’s propose a simpler, more-tractable function of the 
lender’s pricing (kd) of risky debt; importantly, such an approach will permit us to easily treat 
financing costs as endogenous to the borrower’s leverage decision – as opposed to the more 
traditional treatment which often assumes exogenous, constant debt cost. This reduced-form 
function requires several salient features; it should: a) be convex (with regard to the leverage ratio), 
b) have a maximum leverage ratio – given the concerns indicated above – that is well below 100%, c) 
have a boundary condition that approaches the mortgaged asset’s expected return [E(ka)], and d) be 
tied to the volatility (σa) of the mortgaged asset’s return. Specifically, let’s assume that this pricing 
function can be approximated by: 
 

 
1d f

LTVk r
LTV

γ d= + +
−

  (1) 

 

where: rf = the risk-free (e.g., Treasury) rate, γ = structural differences as between the Treasury and 
commercial mortgage markets,6 d = the price of default risk, and LTV = the leverage ratio (i.e., the 
debt amount relative to asset value).7 Equation (1) is clearly convex8 (with regard to the leverage 
ratio), as it produces a risk-pricing structure that can be illustrated as in Exhibit 1: 
 

                                                 
6 More completely, these differences include:  

• Treasury bonds make semi-annual interest-only coupon payments, while mortgage loans generally make 
monthly payments of principal and interest. (As such, the durations of these two securities differ when they 
have identical maturities.) 

• Third-party servicing fees are deducted from the mortgage loan payments prior to investors receiving their cash 
flow. There may also be additional internal costs to monitor the mortgage-loan collateral (which is not the case 
for U.S. Treasuries). 

• Because of the inherent lag between the dates of the mortgage loan commitment and the loan funding, lenders 
often hedge the risk of (fixed) interest-rate movements with interest-rate swaps. (These hedging costs are 
specific to the mortgage loans.) 

• While Treasury bonds and (commercial) mortgage loans are non-callable, the risky nature of the mortgage loans 
however suggests that investors face re-investment rate risk which cannot be contracted away (either by yield-
maintenance or defeasance provisions) in the face of default risk. 
 

7 This paper takes no stand on whether lenders decide to securitize their mortgages or retain them on their balance 
sheets (e.g., see: Ambrose, Lacour-Little and Sanders (2005)). 
 
8 A comparison of Equation (1) to the more traditional option-pricing approach is found in Appendix A. 
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Let’s further designate a maximum leverage ratio9 (.5 < LTVMax < 1) which is well below 100%, 
thereby satisfying the lender’s earlier-mentioned concerns about the borrower’s effort, financial 
distress, risk shifting, etc.  Let’s additionally stipulate that, at this boundary condition, the cost of 
indebtedness equals a percentage, θ, of the mortgaged asset’s (or collateral’s) expected return [E(ka)]. 
Then in the limit, as LTV → LTVMax  kd  → θ * E(ka).  

Consequently, we can invert Equation (1) to solve for the pricing (d ) of risky debt using this 
boundary condition at LTVMax:

10  

 

( )

( )

1

1

 
 

 
 

Max

Max
d|LTV f a

Max

Max
a f

Max

LTVk r E k
LTV

LTVE k r
LTV

γ d θ

d θ γ

= + + =
−

− = − − 

  (2) 

                                                 
9 Given our setup, LTV Max  must be greater than 50% for technical reasons. 
 
10 In equilibrium, θ E(ka) > rf  + γ and, accordingly, d  is always positive. 
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Notice that the pricing (d ) of default risk is a function of the asset’s expected return (as well as: rf , γ  
and LTVMax).

11 In equilibrium, an asset’s expected return is tied to the volatility (σa) of that asset’s 
return and, as such, the default premium is also a function of the asset-level volatility.12  

  
Therefore, all four of the earlier-mentioned salient requirements (i.e., convexity, maximum leverage 
ratio, boundary condition, and volatility-based pricing) are satisfied by Equation (1).  
 
II. Levered Equity Returns with Risky Debt 
Let’s next turn our attention to the expected return on levered equity [E(ke)]. To do so, let’s use a 
simple restatement of the one-period model of levered returns of Modigliani and Miller (1958), 
augmented by the inclusion of risky debt (as denoted in Equation (1)) and thereby making debt costs 
endogenous to the borrower’s leverage decision: 
 

 

( ) ( )

( )

1

1
1

a d
e

a f

E k k LTV
E k

LTV

LTVE k r LTV
LTV

LTV

γ d

−
=

−

 − + + − =
−

  (3) 

 
Without loss of generality, let’s presume fixed-rate financing; in such a financing environment, the 

                                                 
11 Another interesting difference as between the reduced-form approach suggested here and the more-traditional option-
pricing approach used elsewhere is the emphasis on E(ka) here (or θ E(ka), more accurately) as compared to the 
emphasis on σa elsewhere (in both cases, holding constant other factors). That is, this paper argues that kd → θ E(ka) 
while option-pricing models use σa to price the borrower’s put option. In certain states of the world in which E(ka) is 
low and σa is high, it is possible that the option-pricing approach produces kd > E(ka) > θ E(ka). In one sense, this 
clearly violates the equilibrium condition that the borrower cannot plausibly promise to pay the lender more than the 
E(ka). On the other hand, it may well benefit the lender in this state of the world (E(ka) ↓ and σa ↑) to quote credit 
spreads greater than is justified based on expectations about future asset-level returns.   
 
12 In equilibrium, the mortgaged asset’s expected return [E(ka)] is a function, as determined by the marketplace, of the 
volatility (σa) of the asset’s return. Consequently, both d and θ are also functions of asset volatility – because they are 
functions of the asset’s expected return. As an example, it is widely believed that the volatility of returns from hotel 
properties exceeds that of industrial properties (σa|Hotels > σa|Industrial) and, accordingly, the expected returns from hotel 
properties exceeds that of industrial properties [(E(ka|Hotels) > (E(ka |Industrial)]. Consequently, the price of default risk is 
higher for hotels than it is for industrial properties (d Hotels > d Industrial). And by similar reasoning, one would expect that 
the maximum leverage ratio also varies by the collateral’s risk attributes (e.g., LTVMax | Hotels < LTVMax| Industrial). 
Accordingly, the mortgage interest rate and the risk terms are jointly determined. See Donaldson and Wetzel (2018), 
which indicate that mortgage contracts are equilibrium outcomes of a multidimensional negotiation between borrower 
and lender. 
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volatility of levered equity returns (σe) is:
13 

  

     
1

a
e LTV

σσ =
−

             (4) 

where σa = the volatility of (unlevered) asset returns. Additionally, Equation (4) can be substituted 
into Equation (3), such that the expected return on levered equity is restated in terms of volatility. 
When so doing, Equation (3) becomes: 
 

( )
( )( ) ( ) ( )2

2

2a f
e f e e

a a

E k r
E k r

γ d dγ d σ σ
σ σ

− − +
= + − + −     (5) 

From this restated version of the expected return on levered equity, Equation (5) makes clear that 
the risk/return continuum is a positive function of the standard deviation of levered equity returns 
and a negative function of its variance.14  

To help fix these ideas, let’s parameterize Equations (1) – (5) as follows: rf = 2.5%, γ = 0.4%, LTV 

Max = 90%, E(ka) = 7.5% and σa = 10%.15 Additionally, equilibrium requires that 
( )

1f

a

r
E k

γ
θ

+
< < ; so, 

let’s consider three potential values (or ranges) of θ . Accordingly, the risk/return continuum of 
levered equity, in the presence of risky debt, can be illustrated as in Exhibit 2. 

                                                 
13 Equation (4) derives algebraically from Equation (3), when fixed-rate financing is used and such debt is not marked to 
market. If floating-rate debt is used (or fixed-rate debt is regularly marked to market), then the volatility of levered equity 

returns is given by: 
( )

2 2
2 2

,2
1 2

1 1 1e a d a d a d
LTV LTV

LTV LTV LTV
σ σ σ σ σ ρ   = + −   − −    −

; where: 2
dσ = the variance 

of floating-rate debt and ,a dρ = the correlation between asset-level returns and the cost of floating-rate indebtedness. 

 

14 More broadly, ( )
( ) ( )2 32
1 1

a fe E k rk LTV
LTV LTV LTV

γ
d

− −∂
= −

∂ − −
 (i.e., the partial derivative of Equation (3) with respect to 

the leverage ratio) indicates that, at sufficiently high leverage ratios, the absolute value of the second right-hand term 
dominates the first right-hand term – thereby producing instances in which additional leverage drives down the expected 
return on equity. 
 
15 Given the limited-liability nature of non-recourse financing, the selected parameters should reflect the fact that the 
loss on equity cannot exceed 100% of invested capital. While this condition may be violated in some of the illustrations 
that follow, it happens with such de minimus probability that it can generally be safely ignored for purposes of these 
illustrations.  
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As earlier noted, θ represents the degree to which the lender appropriates the asset’s expected return 
[recall: as LTV → LTVMax  kd  → θ * E(ka)]. Said alternatively, the larger the value of θ indicates 

more costly debt, for a given leverage ratio (i.e., the credit spread rises as θ rises). A few notes about 
Exhibit 2 are pertinent (for purposes of this discussion, the upper bound of θ  is one): 

 

• 
( )1

f
d|Max f

a

r
k r

E k
γ

θ γ
+

= ⇒ = +  If the lower limit of θ  equals 
( )

f

a

r
E k

γ+
, then the price of risky 

debt is zero (d = 0) and, in turn, the cost of indebtedness (kd) is constant, equal to rf + γ, 
irrespective of the leverage ratio. While this assumption is often made in practice16 and 

                                                 
16 The standard implementation of the corporate finance model is to assume either constant debt costs or some ad hoc 
adjustment to those debt costs. However, in fairness to Modigliani and Miller (1958), they also contemplated (see 
footnote 17 therein) that: “We can also develop a theory of bond valuation along the lines essentially parallel to those 
followed for the case of shares. We conjecture that the curve of bond yields as a function of leverage will turn out to be 
nonlinear…” Consequently, they not only contemplated the pricing of risky debt but, when followed through to its 
logical conclusion, also the sort of curvilinear risk/return relationship illustrated in Exhibit 2. 
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thereby generating the familiar linear risk/return continuum, constant borrowing costs (as a 
function of the leverage ratio) violate the very notion of pricing risky debt.  
 

• 
( )

( )
( )

2 2 2
a f a f

d|Max
a

E k r E k r
k

E k
γ γ

θ
+ + + +

= ⇒ =
  

 Any value of θ greater than ( )a

f

kE
r γ+

 

produces a price of risky debt which is greater than zero (d > 0). When θ is less than or 

equal to 
( )

( )2
a f

a

E k r
E k

γ+ +
  

, the return on levered equity is monotonically increasing, which, in 

turn, produces a (concave) curvilinear risk/return continuum, as also implied by McDonald 
(2006) when examining the expected return on levered equity when risky debt is valued using 
Black-Scholes option pricing. θ2 is the largest value of θ that still produces a monotonically 
increasing return on levered equity (i.e., any value θ greater than θ2 produces a decline in the 
expected return on levered equity – for leverage ratios not greater than LTVMax ). 
 

• ( )3 1 d|Max ak E kθ = ⇒ =  Any value of θ in excess of 
( )

( )2
a f

a

E k r
E k

γ+ +
  

produces, at high 

leverage ratios, the irrational outcome that the expected return on levered equity reaches a 
maximum while the volatility of levered equity continues to increase. It is irrational in the 
sense that it leads to a condition in which expected levered equity return are declining, while 

volatility is increasing. ( )
( ) 2

a f*

a f

E k r
LTV

E k r
γ

γ d
− −

=
− − +

 is the leverage ratio at which the expected 

return on levered equity is maximized.17 In the extreme, θ3 = 1 and the expected return on 
levered equity equals the expected (unlevered) asset return at the maximum leverage ratio; 
however, the volatility of the levered equity return equals a multiple (i.e., 1/(1 – LTV Max)) of 
the volatility of the (unlevered) asset return.18   

                                                 
17 When ( )

( )2 2
a f

a

E k r
E k

γ
θ θ

+ +
≤ =

  
, then Max

* LL TVTV > , thereby preserving the condition that the expected return 

on equity is monotonically increasing. Conversely, when 2 3 1θ θ θ< ≤ = , then Max
* LL TVTV < , thereby creating a 

condition whereby that the expected return on equity displays a local  maximum. In the special case of θ3 = 1, 

2  
Max

Max
x

*

Ma

LTV LTV
L V

T
T

L V <
−

= . 

 
18 It is also the case that the price (d ) of default risk is twice as expensive when θ = 1 as compared to the limiting case of 

when θ = ( )
( )2

a f

a

E k r
E k

γ+ +
  

. 
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While 2θ θ> at leverage ratios greater than LTV* is irrational from an ex ante perspective,19 it is 

clearly possible that the expectations about expected asset-level returns [E(ka)] may differ from the 

realizations of asset-level returns ( )ak . When expected returns exceed realized returns, levered 

equity returns exhibit the downward sloping curvature shown in Exhibit 2 when leverage ratios are 
high. In fact, the difference between the expected and realized asset-level returns may be so severe 
that the debt costs exceed realized asset returns (which implies θ > 1); if so, any amount of 
borrowing worsens the levered borrower’s return (i.e., the borrower experiences “negative 
leverage”). Finally, it should also be noted that lenders’ and borrowers’ ex ante beliefs about asset-
level returns may differ (and it may often be the case that the former is less optimistic than the 
latter). 
 
Exhibit 3 replicates Exhibit 2 except for three additions which are intended to aid the reader’s 
intuition: a) icons corresponding to various leverage ratios have been added, b) additional values of θ 
(and the effect on the risk/return characteristics of levered equity) have been added, and c) assuming 
θ3 =1, the leverage ratio which maximizes the return on equity (LTV*) is identified (given our 
earlier-indicated parameters, LTV 

* ≈ 81.8%).  

                                                 
19 As an aside, it may be the case that certain investors (typically, non-institutional investors) choose to borrow even 

when ( )
( )2

a f

a

E k r
E k

γ
θ

+ +
>

  
 at leverage ratios greater than LTV*. Consider the context of an investor’s finite wealth  vis-

à-vis commercial real estate’s lack of divisibility and high search costs as well as the unique nature of each building. The 
confluence of these factors suggests that the specialized knowledge often associated with operating local properties 
might translate into a particular investor having to utilize more leverage than is optimal in order to acquire a given 
property, create greater portfolio diversification, etc. 
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The addition of identified leverage ratios helps illustrate that, at higher leverage ratios (and, 
therefore, higher levels of return volatility), the level of θ matters most. At those higher leverage 
ratios, the expected return on levered equity diverges significantly from using these lower and upper 
limits of θ. Alternatively stated, there is little difference in the cost of indebtedness for leverage 
ratios of, say 50% or less of the maximum loan amount and, as such, there is comparatively little 
difference in the expected return on levered equity. The addition of the grey-dashed lines indicates 
that there are two regions of possible θ 's impact (i.e., the steepness of the credit curve) on levered 
equity returns. Region 1 constitutes values θ  which lie between θ1 and θ2, while Region 2 constitutes 

values θ  which lie between θ2 and θ3. Any value of θ attributable to Region 1 produces a 
monotonically increasing expected return on levered equity – irrespective of the leverage ratio 
(provided that it does not exceed LTV Max). Any value of θ attributable to Region 2 ultimately 
produces an expected return on levered equity which reaches a maximum – with any additional 
leverage leading to a decline in the expected return. Finally, the addition of LTV * (which is the 
leverage ratio that maximizes the expected return on levered equity) is shown when θ3 = 1. 
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III.   An Application of the Law of One Price 
The law of one price states that two assets which have identical cash flows must have the same 
price; if not, an arbitrage opportunity exists whereby the underpriced asset is bought and the 
overpriced asset is simultaneously sold short. In so doing, the arbitrageur locks in a riskless profit. 
These arbitrage activities drive the convergence in asset prices and markets towards equilibrium 
prices. 

In private markets (real estate or otherwise), shorting a security is typically implausible. Instead, the 
practical application of the law of one price is that the distribution of likely returns for unlevered 
“core” (i.e., low-risk/low-return) assets can be transformed through the use of financial leverage to 
create investments that replicate the distribution of likely returns for unlevered “non-core” assets. If 
not, the flow of capital from sophisticated investors would favor the underpriced asset and disfavor 
the overpriced asset, thereby driving market prices towards their equilibrium. 

Let’s assume that there is investor consensus about the expected return ( )mE k    and risk ( )mσ on 

the “core” market portfolio.20 More specifically, ( )mE k equals the value-weighted average of the 

expected returns on the market basket of core properties and mσ  equals the value-weighted average 

of the volatilities of those returns. For simplicity, the same values assumed earlier for ( )aE k  and aσ  

are used here for ( )mE k  and mσ . Note that the latter does not equal the volatility of the return for 

the market basket, Mktσ , of core properties.21 

We then can utilize that consensus view to trace out the equilibrium set of market risk/return 
opportunities. In principle, arbitrage forces all properties (and investing strategies) to adhere to this 
continuum. The previous section establishes that, in equilibrium, the levered equity investor – in the 
presence of risky debt and endogenous borrowing costs – faces a monotonically increasing, but 
concave, risk/return continuum. As such, Exhibit 4 illustrates the risk/return spectrum on which all 

                                                 
20 It is widely viewed that the “core” market (i.e., built and fully leased apartment, industrial, office and retail properties) 
is substantially larger (in terms of market capitalization) and more homogenous (in terms of pricing, rents, occupancy, 
tenant quality, etc.) than the non-core market (e.g., value-added and opportunistic strategies). Given its larger size and 
more commodity-like nature, the dispersion of investor opinion concerning the core market is likely to be narrower than 
for the non-core market.  
 

21 Technically, ( ) ( )
1

N

i a ,i|Corem
i

E k w E k
=

= ∑ ; where: wi = the proportion of each property allocated to the ith property, for 

all N properties. And, 
1

N

i a ,i|Corem
i

wσ σ
=

= ∑ , while 
N N

i jMkt i , j a ,i|Core a , j|Core
i=1 j=1

 = w wσ ρ σ σ∑∑ . As such, Mktmσ σ> when 

i , j  ρ <1. 
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unlevered asset strategies22 should rest in equilibrium and, ultimately, the continuum also contains all 
levered strategies as well.  

Some assets will have less expected return and risk than the (core) market portfolio (estimated by 

( )mE k  and mσ ).23 To a point, these assets can be thought of as properties that are less volatile (e.g., 

an office building leased on a long-term, net basis to a federal agency) than average core property; it 
is important to understand how to also price these lower-risk assets. However and as we approach 
the risk-free rate, it is perhaps more intuitive to think of these as investments in various debt 
securities (starting with high-yield debt and then proceeding to first mortgages) – among others, see 
Pagliari (2017). That is, though this approach began with the market portfolio and, through the use 
of leverage, constructed the risk/return continuum for higher-risk/higher-return assets, the 
approach also provides a method by which the risk/return continuum extends to lower-risk/lower-
return assets. 
 

                                                 
22 The ranges of unlevered value-added and opportunistic returns are provided merely as an illustration. In practice, there 
tends to be much imprecision and disagreement as to the risk/return characteristics of the non-core assets. 
 
23 Here, LTV ratios are negative; the absolute value of which represents the portion invested in the risk-free asset. In 
turn, the volatility function (Equation (4)) was modified to acknowledge a portion of the portfolio being invested in the 
risk-free asset: ( )1e aLTVσ σ= − . The expected returns were determined using Equation (5).  



14 
 

 

All real estate investors have the practical (as opposed to the solely theoretical) opportunity of 
simply leveraging up their core  assets as an alternative to investing in riskier non-core assets. In 
equilibrium, investors’ funds will flow to whichever alternative provides the greater expected return 
after holding risk constant (or vice versa), thereby eliminating, merely via financial engineering, any 
arbitrage possibilities (as the price of the overvalued alternative falls and the price of the undervalued 
alternative rises). For the integrity of the law of one price to be maintained, it must also be the case 
that both unlevered and levered investment opportunities lie on this continuum. As one example, a 
core property with significant leverage should replicate the risk/return characteristics of a non-core 
property with modest leverage.  

However, this depiction of the risk/return continuum differs from the standard finance literature in 
two important respects: First (and as noted earlier), this paper argues for a curvilinear risk/return 
continuum, which stands in stark contrast to the linear relationship most often asserted (e.g., see 
Campbell (2018)). The standard finance literature imagines a frictionless market in which investors, 
among other things, can costlessly short any security. While the public market might closely 
approximate these requirements,24 the same cannot be said about the private market. And 

                                                 
24 Schliefer and Vishny (1997) and Lamont and Thaler (2003) point out some of the limits of these arbitrage arguments.  
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accordingly, it is argued here that the risk/return continuum is curvilinear. Interestingly, several 
authors – including Fama (1986), Fama and French (1992, 2004) and Frazzini and Pedersen (2014) – 
find that the realized risk/return continuum for publicly traded securities (for debt instruments as 
well as equities) is flatter than implied by the standard finance literature. While those papers look for 
additional (systematic and priced) factors25 to explain this result, this paper argues that the flattening 
of the risk/return continuum is a natural outgrowth of considering risky debt.  

Second, this depiction also differs from the standard finance literature in that total risk (σa) is 
considered, rather than some measure of undiversifiable or systematic risk. Given the asset-specific 
and asymmetric nature of the lender’s participation in the asset’s total return, total risk is clearly the 
metric by which lenders ought to price default risk (i.e., the value of the (non-recourse) borrower’s 
put option is a function of total risk (σa) – not merely systematic risk). However, the same argument 
cannot be made for levered equity investors. For such investors in the public market, it is widely 
assumed that idiosyncratic or unsystematic risk can be costlessly diversified away and, in turn, it is 
only systematic risk that should be priced. The (one-factor) capital asset pricing model (CAPM) of 
Sharpe (1964) and others posits, among other features, that all investors hold the “market” portfolio 
(and that there are no non-traded assets); in such a world, systematic risk is measured by the 
security’s covariance with the broader market – more specifically, the security’s “beta” (β ). Clearly, 
private-market assets, like commercial real estate, do not comport well with CAPM’s underlying 
assumptions – including: no private investor can own the market portfolio. As such, private real 
estate investors are concerned with total risk. 

That said, it is of course natural to assume that at least some private real estate investors are also 
concerned with how individual properties contribute to the risk of their (commercial real estate) 
portfolio.26 Despite the private real estate investor’s inability to own the market portfolio, it is 
helpful to recall CAPM’s basic tenets about pricing systematic risk via a security’s beta, which – for 
the ith security – is βi = ρi,Mkt σi/σMkt ; where: ρi,Mkt  = the correlation of the ith security’s return to the 
market’s return, σi = the standard deviation of the ith security’s return, and σMkt = the standard 

deviation of the market’s return. Since σMkt is merely a scalar, the important components of beta are 
ρi,Mkt  and σi . In this paper’s setup, σi is equivalent to σa ; so, the only unaccounted component is 

ρi,Mkt . Assuming that investors are also concerned with this aspect of diversification,27 then several 

                                                 
25 Interestingly, Frazzini and Pedersen (2014) argue that one of these factors is “betting against beta” whereby low-beta 
securities are held long and high-beta securities are sold short.  
 
26 However, for some property investors, diversification is less important than focus. The public real estate market 
provides a natural experiment for comparing the effects of diversification versus concentration; among others, see: Ro 
and Ziobrowski (2011). 
 
27 This implies that investors believe that there is significant variation in  ρi,Mkt across possible property investments; in 
the alternative, if investors believe that there is insignificant variation in ρi,Mkt across properties, then ρi,Mkt is tantamount 
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possibilities exist including: a) investors utilize crude metrics of property type, geography and/or 
other “style” characteristics to naively diversify their portfolios (i.e., a form of constrained portfolio 
optimization) or b) due to the fact that private markets do not comport well with the assumptions 
underlying CAPM, investors separately estimate each of ρi,j  and σi for each of the property 
investments in their portfolios.28 In the latter instance, investors may consider a three-dimensional 
surface in which expected returns are an explicit function of ρi,j  and σi – as opposed to collapsing 
these two elements into one (βi). 

Lastly and given the breadth of both the private and public real estate markets, it cannot be the case 
that pricing of risk in one market substantively differs from the pricing in the other market. 
Ultimately, the pricing practices of the private and public markets must converge with one another; 
otherwise, a significant arbitrage opportunity would persist. Instead, we empirically observe (see 
Pagliari, et al. (2003) and others) that the long-run returns of these two markets – after controlling 
for leverage (and other factors) – are statistically indistinguishable from one another, thereby 
eliminating persistent arbitrage opportunities.   
 
 
IV.   Delegated Investment Management 
Let’s next consider delegated investment management. In those instances where passive real estate 
investors (e.g., limited partners) invest a portion of their wealth in a particular property or fund, there 
is typically a contingent-profits interest provided to the operating (or general) partner (which, in 
turn, provides expertise – including the sourcing, financing and operation of the property or fund). 
This residual-profits interest creates an asymmetric, option-like participation for the operating 
partner and well-known principal/agent problems (e.g., see Pagliari (2015) among others). Like any 
contingent claim, the value of the option increases with the volatility of the underlying security. 
Accordingly, the operating partner may be perversely motivated to leverage the property in excess of 
LTV* because the expected value of its promoted interest increases with this leverage-induced 
volatility.  
 

Let’s revisit the earlier illustration of levered equity returns (Exhibit 3) and examine the net return to 
limited partners when the general partner receives a promoted (or carried) interest. For purposes of 
illustration, let’s assume that the limited partners receive a preferred return of 7.5% per annum and 

                                                                                                                                                             
to yet another scalar (with σMkt  acting as the other a scalar). Real estate investing differs from stock investing more 
broadly, in which the latter permits investing across industries (e.g., energy, financials, tech, utilities, etc.) – whereas real 
estate is only one industry. 
 
28 For a given portfolio, Fama (1976) indicates that this contribution consists of the proportion of the portfolio invested 
in that asset and the weighted average of the pairwise co-variances between the returns of that asset and all other assets 
in the portfolio. 
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that the general partner receives 20% of any excess profits.29 (To help illustrate the “optionality” 
embedded in the general partner’s promoted interest, the limited partner’s preferred return was 
specifically set equal to the (unlevered) asset’s/fund’s expected return – a point we will revisit.)  
 
1. An Equilibrium Case:θ2  

Of the potential equilibrium cases 
( )

( )
( )2

f a f

a a

r E k r
E k E k

γ γ
θ

 + + +
< ≤ 

    
, let’s examine the one in which 

the lender extracts the largest surplus: 
( )

( )2 2
a f

a

E k r
E k

γ
θ

 + +
= 

    
. In this case (and given our earlier 

assumptions), the returns to levered equity as well as to each of the general and limited partners are 
illustrated in Exhibit 5: 30 
 

                                                 
29 This analysis presumes that the terms (i.e., the promote vis-à-vis the preference) of the operator’s contingent interest 
remain unchanged as the leverage ratio varies. 
 
30 For both the general partner’s expected promote and the investors’ net return, the horizontal axis remains the 
volatility of the fund’s return (i.e., it is neither the volatility of the general partner’s expected promote nor the volatility of 
the investor’s net return). Not only does this facilitate comparability across the three return elements, it also recognizes 
that the reduction in the dispersion of the investors’ net return – due to the attenuation of the “upside” as a result of the 
promote paid to the general partner – mathematically results in a lower calculated standard deviation; however, this is an 
illusion in the sense that the investors retain all of the downside. For further discussion, see Pagliari (2015) among 
others. 
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The upper (blue) line represents the fund’s gross return across various leverage ratios, using the 
same assumptions as Exhibits 3 and 4. Because of varying fee structures across fund offerings, a 
fund’s gross return is often quoted when discussing performance, evaluating track records, etc. The 
lower (green) line represents the expected amount of the fund’s gross return to be paid to general 
partner due to its promoted interest.31 (The calculations determining the expected promoted interest 
are provided in Appendix B.) It is clear that the value of the expected “promote” increases linearly32 
with the volatility of the fund’s return (e.g., as more leverage and/or riskier properties are added to 
the fund.) The middle (maroon) line represents the investors’ net return. Given the concavity of the 
fund’s returns and the linearity of the general partner’s promoted interest, the concavity of the 
investor’s (net) return is more pronounced than the fund’s return. And even though the fund’s 
expected returns are monotonically increasing, there is a local maximum with regard to the investors’ 

                                                 
31 For simplicity, any base fees additionally paid to the general partner have been ignored. While it is often argued that 
these base fees merely “keep the lights on” for the general partner, they unquestionably lower the investors’ net return – 
regardless of the fund’s (or venture’s) profitability. This being true, including base fees would not change the curvature 
of the investors’ net return. 
 
32 There is a small exception at the highest leverage ratios (at which, the concavity of the fund’s return is most 
pronounced); at these higher leverage ratios, the slope of the general partner’s expected promote (vis-à-vis the volatility of 
the fund’s return) declines somewhat – almost imperceptibly so, given the scale of Exhibit 5. 
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net return; at which point, further borrowing is irrational for the limited partners, but not necessarily 
so for the general partner. Even if there were no local maximum, the flattening of the investors’ net 
returns at high leverage ratios would require very low levels of risk aversion in order for the limited 
partners to find these highly levered (net) returns to be attractive. Notwithstanding that the expected 
value of the general partner’s promoted interest is (linearly) increasing with the volatility of the 
fund’s return, the general partner rationally views the riskiness of that return in light of the firm’s 
likely future fundraising efforts – where poor (realized) performance can greatly reduce the success 
of those future efforts (e.g., see Panageas and Westerfield (2009)). 
 
2. A Non-Equilibrium Case: θ1  
Let’s next examine one of the two limiting (albeit, irrational) cases. This first case considers instances 
in which borrowing costs are constant across all leverage ratios: θ1 (i.e., θ1  d = 0). While this case 
(as noted earlier) violates the notion of risky debt, it is instructive to inspect the payoffs to the 
general and limited partners in such an environment – see Exhibit 6: 
  

 
 
As in the equilibrium case (see Exhibit 5), the expected return with respect to the general partner’s 
promoted interest is linear (or nearly so) with regard to the volatility of the fund’s return. But 
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because the fund’s return is also linear, so is the nature of the limited partner’s return (i.e., it too is 
linear with regard to the volatility of fund-level returns). In fact, this is the only case in the limited 
partner’s return is linear with regard to fund-level volatility. Unfortunately for limited partners, this 
outcome is fictional, as borrowing at the riskless rate is unavailable. (In all other cases, the limited 
partner’s return is concave with respect to fund-level volatility.) Nevertheless, the difference 
between the fund’s return and the limited partner’s return is widening as leverage/volatility increases 
– because the dilution of the limited partners’ expected (net) return, due to the general partner’s 
expected promote, is increasing with the leverage ratio. 
 
3. A Non-Equilibrium Case: θ3  
Finally, let’s examine the second of the two limiting (albeit, irrational) cases. This second case 
considers those instances in which borrowing costs equal, at the maximum leverage ratio, the asset’s 
expected return (i.e., θ3 = 1) – see Exhibit 7:  
  

 
 
As indicated in Exhibit 7, the concavity of both the fund’s and the limited partner’s return are quite 
pronounced (so much so, as earlier noted, that the fund’s expected levered return equals the fund’s 
expected (unlevered) asset return at the maximum leverage ratio (LTVMax); there, the general 
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partner’s expected promoted interest slightly exceeds the fund’s expected return and the limited 
partner’s expected (net) return is slightly negative. And, given the extreme concavity of the fund’s 
expected return (as a function of leverage/volatility), it is unsurprising that the concavity of the 
general partner’s expected promoted interest as illustrated above is the most extreme of the three 
cases examined here.  
 
4. A Précis:  
When examining investors’ (net) returns in light of risky debt it is apparent that, even though the 
fund’s expected returns are monotonically increasing, there may be a local maximum with regard to 
the investors’ net return; at which point, further borrowing is irrational for the limited partners (even 
if they are risk-neutral), but not necessarily so for the general partner. Even if there is no local 
maximum, the flattening of the investors’ net returns at high leverage ratios requires very low levels 
of risk aversion on the part of limited partners in order to find these highly levered (net) returns to 
be attractive. All of this begs several (unanswered) questions: 
 

Given the typically immense asymmetric information divide as between the principals (i.e., 
the limited partners) and the agents (i.e., the general partners), is it reasonable to believe that 
limited partners can even observe the significant dilution in their expected returns for those 
fund utilizing significant leverage (say, more than 75% in our illustrations)? 33  
 
If not, do limited partners rely on the general partner to set reasonable leverage ratios (as 
both the limited and general partners know that the riskiness of highly levered returns might 
jeopardize the success of future fundraising efforts)? 
 
If not, do limited partners set ad hoc leverage limits on the funds in which they invest?  

 
Additionally, note that, in all three cases illustrated here, the increase in the fund’s expected return is 
solely due to financial engineering (i.e., it is assumed that that the fund acquires core assets, at market 
prices, and levers them up (or, equivalently, acquires – with less leverage – non-core assets at market 
prices)); yet, the expected value of the general partner’s promoted interest is increasing with the 
degree of leverage. In these illustrations, the general partner has  displayed no “skill.” The empirical 
evidence, with regard to the risk-adjusted (net-of-fees) performance of non-core funds, is not 
encouraging – see Bollinger and Pagliari (2019) and Pagliari (2016) – which potentially suggests that 
even many institutional investors may have not fully discerned these lessons about the interplay of 
risky debt, leverage and delegated investment management fees.  
                                                 
33 These high leverage ratios may be particularly emblematic of the opportunity funds. While their “targeted” leverage 
ratios may be stated to be at or below 75%, their use of “subscription” lines (i.e., borrowing against committed, but not 
yet contributed, capital of the limited partners) may increase the fund’s effective leverage ratio substantially above such 
targets. For example, see: Marks (2017). 
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V. Concluding Remarks 
The prevalence of financial leverage in private, commercial real estate investing indicates that 
investors are well-served to understand the impacts of such leverage on their investments – 
particularly given the disappointing performance many institutional investors have experienced with 
many of their high-risk/high-return (i.e., high-leverage) funds. Using a simple reduced-form model 
to approximate the pricing of risky debt, this article focuses on three aspects of levered equity 
returns when investing in private commercial real estate: First, the positive relationship between the 
project’s leverage ratio and the costs of mortgage-loan borrowing creates a concave risk/return 
continuum for levered equity investors. The lender’s pricing of risky debt is such that the 
equilibrium return on levered equity asymptotically reaches a maximum; while additional borrowing 
increases the expected return on equity, it only marginally does so. Second, the law of one price 
suggests that this curvilinear continuum represents the basis on which higher-risk/higher-return 
investments ought to be measured – as opposed to the more widely theorized linear relationship 
(which assumes constant borrowing costs). Third and when considering delegated investment 
management, additional borrowing linearly increases the expected value of the sponsor’s (or general 
partner’s) promoted interest, which directly reduces the expected return of the investor’s (or limited 
partner’s) net return. In almost all cases, this reduction in the investor’s (net) return leads to an 
optimal leverage ratio well below the maximum available. All three of these impacts are attenuated at 
the highest leverage ratios.  
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VII. Appendix A 
As a first attempt at understanding the theoretical basis for estimating the increase in the lender’s 
interest rate as the loan-to-value increases, assume a simple application of the Black-Scholes (1973) 
option-pricing model in which the underlying asset pays no dividend. In so doing, we can view the 
lender as proving a riskless loan less the value of the borrower’s put option – given a particular 
commercial loan obligation. To illustrate the example, let’s begin with our earlier assumption about 
the adjusted risk-free rate (i.e., rf + γ = 2.9%) and asset-level volatility (i.e., σa = 10%); moreover, let’s 
further assume that the term of the mortgage loan equals 5 years.34  

Exhibit A.1 compares the option-based pricing of the default premium to a rational value of θ with 
respect to the default-premium (d ) approximation:  

 

                                                 
34 While the term to maturity (T ) is immaterial (assuming σa is time-invariant) with respect to the calculation of the 
estimated default premium (d ), it can matter a great deal to the valuation of the put option (i.e., as T increases, the value 
of the option increases ). The choice of T = 5 is arbitrary. 
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Exhibit A.1: Estimated Default Premium as a Function of  the Loan-to-Value Ratio,
Comparing Black-Scholes & Default Premium Approximations  
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The default-premium approximation is based on the largest return that the lender can demand in 

equilibrium:
( )

( )2 2
a f

a

E k r
E k

γ
θ

 + +
= 

    
. In this instance, the default-premium approximation (i.e., the red 

line) is always above the option-based pricing of the default premium (i.e., the blue line), with the 
difference averaging approximately 25 basis points over the range examined above: 0 ≤ LTV ≤ 
LTVMax = 90% (by assumption).35 The magnitude aside, this result is consistent with Culp, Nowaza 
and Veronesi (2018). 

If one is to believe that the option-pricing methodology is superior for our purposes (despite the 
earlier criticisms), then it is apparent that the default-premium approximation overstates the option-
based default premium at all relevant loan-to-value ratios. The impact of these differences in the 
expected debt cost is that default-premium approximation produces an understatement of the 
expected return (for a given level of equity volatility).  

In this paper, the default-premium (d ) approximation is utilized and the curvature is determined by 

1
LTV

LTV−
. As another perspective, consider the hyperbolic depreciation rates (e.g., see Hoteling 

(1925)) to model different curvatures. Assuming the salvage value equals zero and the asset’s useful 

life equals T, the value of the asset at time t is scaled by: ( ) T tV t
T tφ

−
=

−
, where: φ  = the rate of 

obsolescence (or curvature). The hyperbolic depreciation function captures the change in asset 
values over time. For our purposes, we are interested in values of 0 <φ  < 1, such that the function 

is concave (alternatively, φ  = 0 → linear and φ  < 0 → convex) and utilizing 1 – ( )V t  as the credit-

pricing function. Applying this function to range of leverage ratios from zero to LTVMax and 
recognizing the minimum debt cost equals rf + γ and maximum debt cost equals θ E(ka) produces 

the appropriate convex credit spread. Moreover, φ  = .9 exactly replicates the curvature of
1

LTV
LTV−

; 

as such, please see Exhibit A.2 for an illustration: 

                                                 
35 At least theoretically, the option-pricing approach may consider leverage ratios above LTVMax (but below 100%). 
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However, this discussion about discrepancies in the curvatures of various estimates of pricing risky 
debt masks the important point: In all (equilibrium) cases, the existence of risky debt produces a 
curvilinear risk/return continuum. Indeed, the exact curvature of risky-debt pricing is not our 
immediate purpose; instead, the concavity of the risk/return continuum is produced whenever the 
price of risky debt is positive (d > 0) and its impact on both the pricing of commercial properties 
and the limited partner’s expected return is attenuated.  
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Exihibit A.2: Illustration of  the Cost of  Indebtednss 
as a Hyperbolic Function of  the Leverage Ratio
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VIII. Appendix B 
The expected value of the manager’s promoted interest, [ ]πE , can be given by (see Pagliari

 [ ] ( ) ( )E f x x dx
ψ

π κ ψ
∞

= −∫  (B.1) 

 
where: ψ = the limited partners’ preferred return and κ = the general partner’s promoted interest 
(stated as a percentage of excess profits). Assuming the fund’s returns are normally distributed, 

( )( )2~ ,i e ex N E k σ   , any normal distribution which is truncated beginning at ψ has a conditional 

mean of [ ] ( )|E x x ψ µ σλ α≥ = +  where: ( ) ( ) ( )( )d α λ α λ α α= − , ( ) ( )
( )1

φ α
λ α

α
=

− Φ
,

( )e

e

E kψ
α

σ
−

= , ( )φ α  = the probability density function of α, and ( )αΦ = the cumulative 

distribution function of α – see Greene (2011).36  

 
Accordingly, the mean of a truncated normal distribution is given as a restatement of Equation (B.1) 
and by Equation (B.2): 
 

 ( ) ( ) [ ] ( ) ( )
( )1e e

a

x f x | x a dx E x | x a E k
ψ

φ α
σ

α

∞

=

> = > = +
− Φ∫   (B.2) 

 
One particular view, when E(ke) = ψ, of the truncated normal distribution looks like that illustrated 
in Exhibit B: 
 

                                                 
36 I thank Greg MacKinnon for referring this citation to me. 



30 
 

 
 
By extension, the investing partner’s expected net return, E(η), equals the venture’s expected return 
less the expected value of the general partner’s promoted interest: 
 
 ( ) ( ) [ ]eE E k Eη π= −   (B.3) 
 
Or, equivalently, the limited partner’s expected net return, E(η), can also be viewed as the weighted 
sum of the expectations of the results that occur when the fund’s’s return is less than and greater 
than the preferred return (ψ  ): 
 

 
( ) [ ] ( ) ( ) [ ] ( )( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )( )

1 1

1 1
1e e e e

E E x | x a E x | x a

E k E k

η α κ ψ α

φ α φ α
σ α κ σ ψ α

α α

= < Φ + − > − − Φ  

   
= − Φ + − + − − Φ   Φ − Φ   

  (B.4) 
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Exhibit B: Illustration of  a Truncated Normal Distribution
Assuming that E(ke) = ψ

E(ke) = ψ E[x | x ≥ ψ ]

−σ[x | x ≥ ψ ] +σ[x | x ≥ ψ ]
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