# Impact of High-Skill Jobs On Commercial Real Estate<sup>\*</sup>

Sumit Agarwal<sup>†</sup>

Brent W. Ambrose<sup>‡</sup>

Lily Shen<sup>§</sup>

April 10th, 2022

#### Abstract

Job vacancies and labor demand are among the most critical drivers behind the value of local commercial properties. Using 4.8 million job advertisements from more than 40,000 career websites from 2010 to 2020, we measure labor demand trends within metro areas and assess their impact on CRE rent levels. We build time-varying measures for the demand of workers of high and low machine replacement risk and achieve identification by relying on the cross-sectional differences of tenants and property types to changes in labor skill demand. We document a positive relationship between employment growth and lease rates. For industrial properties, tenants who seek talents one year before the lease was signed pay 9.1% more than similar tenants who did not advertise any job vacancy. Meanwhile, office tenants who seek talents one year before pay 3.2% higher effective rents than tenants who did not announce any position. Those differences in rent levels are mainly driven by the demand for high-skill laborers that machines cannot replace.

Keywords: Commercial Real Estate, House Price, Labor Market, High-Skill Jobs

<sup>\*</sup>We thank our RERI mentors Jacob Sagi and Matthew Anderson for helpful comments and suggestions. Funding for this project provided by the Real Estate Research Institute. Special thanks to the Clemson Machine Learning and Real Estate Creative Inquiry team for their excellent RA work. All errors are our own.

<sup>&</sup>lt;sup>†</sup>National University of Singapore, +65 6516-5316, ushakri@yahoo.com

<sup>&</sup>lt;sup>‡</sup>Penn State University, (814) 867-0066, bwa10@psu.edu

<sup>&</sup>lt;sup>§</sup>Clemson University, (510) 542-0694, yannans@g.clemson.edu

## 1 Introduction

Commercial real estate is an essential component of the U.S. economy. During economic cycles, some cities show strong growth in commercial real estate (CRE) values while others struggle and decline. Extant studies have pointed out that local employment demands are closely linked to the strength of real estate markets.<sup>1</sup> For example, Molloy et al. (2017) document a simultaneous trend in both the decline in employment changes and the decline of the local real estate market since 1980. Furthermore, Pirinsky and Wang (2006) and Tuzel and Zhang (2017) document the direct linkage between local factors such as employment and real estate prices. Similarly, a large literature in urban economics links employment growth to real estate prices (Glaeser, 2008 and Rosenthal et al. (2022)).

The drastic developments in digitization, artificial intelligence (AI), and automation in the past decade present both opportunities and challenges to the labor markets and CRE markets across the U.S. In 2012, the U.S. Bureau of Labor Statistics (BLS) recognized that some low-skill occupations would shrink in their labor demand due to technical advancements while high-skill occupations that cannot be replaced by machines and computers will thrive. If that is the case, the level of rent for CRE properties may increase or decrease based on changes in tenant demand for low-skill or high-skill workers<sup>2</sup>.

A major obstacle in the extant studies on the impact of labor market demand on CRE is that their analyses are limited by aggregated numerical *ex-post* employment data<sup>3</sup>. Having more disaggregated and more detailed *ex-ante* data about the employers' demand for labor skills could go a long way in helping understand the impacts of technology on CRE rents.

<sup>&</sup>lt;sup>1</sup>See, for example, Schnure and Thompson (2020), Saks (2008), Böheim and Taylor (2002), Eliasson et al. (2003)

<sup>&</sup>lt;sup>2</sup>See Assessing the Impact of New Technologies on the Labor Market: Key Constructs, Gaps, and Data Collection Strategies for the Bureau of Labor Statistics [Link]

<sup>&</sup>lt;sup>3</sup>Most of the extant studies focus on *ex post* aggregate measures of employment or unemployment rates. For example, public employment and occupation data published by the Bureau of Labor Statistics (BLS) and the American Community Survey (ACS) are summaries of job matches made available with a considerable lag and thus may not reflect current labor market conditions. As a result, little attention has been paid to employers' labor demand or job vacancies, which are ex ante drivers behind employment and economic growth, and therefore, making them infeasible in CRE investment decision makings.

We bridge this literature gap by focusing on differences in labor skill level to study the extent that labor and real estate (capital) are complements or substitutes (Cobb and Douglas, 1928; Krusell et al., 2000; Karabarbounis and Neiman, 2014; Ohanian et al., 2021; Eisfeldt et al., 2021).

To fix ideas, we rely on the insights obtained from the theoretical model introduced by Eisfeldt et al. (2021) which examines the complementarity and substitutability between firm capital, high skill labor, and low skill labor. In their model, high-skill labor (which they term "human capitalist") earns wage income and equity-based compensation (a share in the firm's capital appreciation). In contrast, low-skill workers only receive wages. By differentiating the compensation packages between high and low skill workers, Eisfeldt et al. (2021) demonstrate that high skill workers and capital are complementary while low skill workers and capital are substitutes. Extending the insights of their model to our commercial real estate setting examined in this study, we would anticipate a stronger link between the low-skill labor demand and the demand for space.

Office and industrial property returns are most likely to respond to changes in high and low-skill worker demand. In this study, we focus on office and industrial properties in three gateway cities across the U.S: Atlanta, GA, Houston, TX, and Miami, FL. We employ information on individual leases from CompStak, an industry-leading data provider on commercial leases. Our data cover the period from 2010 to 2020. The data contains information on the effective rent (contract rent incorporating the effect of lease concessions), property type and quality (building class), lease term, percent of the building represented by the lease, and the signing date of the lease.

We focus on the cross-sectional differences of tenants and property types to changes in labor skill demand. For example, if computers replace low-skill office workers, then office property occupied by tenants with a high fraction of low-skill office workers would decline in value because the space is no longer needed. Meanwhile, returns to office property occupied by tenants with high-skill office workers will show strong growth because those jobs are not machine replaceable. This hypothesis is supported by Schnure and Thompson (2020) who find that metro areas with higher migration of high-skill workers have seen growth in the local office markets. However, MSAs with greater immigration of low-skill laborers in production experienced little to no growth.

Our employment skill demand metric is based on a novel data series from Burning Glass Technologies that contains more than 4.8 million job vacancy advertisements from more than 40,000 online job boards and company websites. Using both the numerical and textual portions of this database, we document labor demand trends from 2011 to 2020, focusing on differences in demand for high or low skilled labor, and assess the impact of these trends on local CRE prices.

We use three approaches to identify the demand for high-skill and low-skill labor in our data. First, we match each job's O\*NET ID with the Bureau of Labor Statistics' *Occupational Employment Projections* data on the likelihood machines can replace such occupation. Next, we validate our labor-skill/automation-risk identifications following a list of high-automation-risk and low-automation-risk occupations provided in Frey and Osborne (2017). Finally, we utilize textual analysis techniques to show the differences in the most common skill requirement words found in each type of job vacancy. We document that office administrative support and transportation jobs require fewer skills and are at the highest risk of being replaced by machines. In contrast, jobs at low risk of automation require higher management skills and educational degrees and are concentrated in information technologies and financial industries.

Our numerical analysis support this hypothesis: for both commercial properties and offices, we find a positive relation between employment growth and lease rates the sensitivity of job announcements for industrial leases is larger than for office leases. For industrial properties, tenants experiencing employment growth pay approximately 9.1% higher effective lease rates, on average, than tenants who did not have a position announcement in the year prior to when the lease was signed. Employment demand has a persistent but diminishing impact on lease rates as we see positive, albeit not statistically significant. For offices, tenants with job announcements in the year prior to leasing office space paid effective rents that were 3.2% higher than firms that did not have a job posting online. Again, the effect dissipates to 2.1% (significant at the 10% level) for job postings two-years prior to the lease year and is positive (but not statistically significant) for job announcements three-years prior to the lease year.

In addition, we document several differential impacts of tenant employment demand on effective rents across the demand for laborers of different skill levels. In terms of job automation risk, office tenants pay 2.8% higher effective rents when advertising low automation risk jobs in years prior to the lease year, while industrial tenants pay 14.6% more. Industrial space usage is negatively correlated with job automation – automation reduces the need for space for employees. Firms that are actively expanding their warehouse/industrial operations but employing more workers that cannot be replaced by equipment are willing to pay higher rents for that space. Overall, our analysis of effective rent is consistent with the theoretical predictions outlined in Eisfeldt et al. (2021), which propose a high degree of complementarity between capital and high skilled labor. We demonstrate that firms expanding their high skilled employment base face higher lease costs is consistent with the complementarity of capital and labor. Furthermore, we do not find a significant link between firm demand for lower skilled labor (high risk of automation) and effective lease costs, suggesting landlords recognize the substitutability associated with low skilled labor and capital, and thus do not increase rents in response to greater lower skilled labor demand. This finding is supported by Wang and Zhou (2021) who find landlords are capable of compiling valuable information at granular levels regarding how tenants operate.

To further investigate the potential impact of the cost of space on employers' demand for high-skill and low-skill laborers, we construct monthly quality-adjusted effective rent indexes for both industrial property and office property for Atlanta, GA, Austin, TX, and Miami, FL. We do not see a strong impact of the lagged rent indexes on the change in job announcements for any skill category.

The paper is structured as follows. Section 2 provides a detailed description of the data and identification strategies. The empirical methodology can be found in section 3. The main results are presented in section 4. We also provide a discussion on the impact of CRE costs and labor demand in section 5. Section 6 concludes the paper.

## 2 Empirical Identification and Data

#### 2.1 Job Vacancy Labor Demand Data

We use daily data on job vacancy postings from Burning Glass Technologies (BGT), an employment analytic and labor market information company. BGT scrapes electronic postings from over 40,000 online job boards and company websites to obtain the "near-universe of jobs that were posted online". The data were first used by Hershbein and Kahn (2018) to show that the Great Recession accelerated adoption of labor-replacing technologies.

We collected and cleaned over 4.8 million real job advertisements covering the period between January 2010 to May 2020 for Atlanta, GA, Houston, TX, and Miami, FL. The data contains over 70 standardized fields providing detailed information about each position, including location (city), employer name, industry, occupation and job functions, and minimum education requirements. As a result, our data set provides rich and timely data on the demand of labor with fine geographic and industry identification for the past decade. Figure 1 plots the monthly number of job advertisements by city. Consistent with the economic expansion during this decade and the growth in on-line job search platforms, we note a positive trend in job postings with a notable upward increase in 2018.

The major downside of the BGT data is that it only covers employers that seek talents from online sources. While online job advertisements have been increasingly common since the late 2000s, there is still a possibility that our data over-represent higher-skilled occupations and industries. The BLS collects establishment-level data on the physical demands, environmental conditions, education, training, and experience of jobs in the U.S. by surveying approximately 25,300 establishments each year, focusing on the requirements of specific occupations from the employer's perspective. This data captures key measures of skill, such as education and pre-employment training. Reassuringly, Dalton et al. (2018) link BGT position advertisements to the *Job Openings and Labor Turnover Survey* released by the BLS at the establishment level and find significant alignment across the two datasets.

#### 2.2 Identify High-Skill and Low Skill Jobs

We use two approaches to identify and validate our categorizations of high-skill and low-skill jobs in our job advertisements data.

First, we match each job's O\*NET ID with the Bureau of Labor Statistics' Occupational Employment Projections data<sup>4</sup>. O\*NET is an online service developed for the US Department of Labor that provides detailed occupation skill requirement information on approximately 600 occupations that can be linked to the Labor Department's Standard Occupational Classification (SOC). For each occupation, O\*NET provides answers to more than two hundred standardised and measurable questions that detail the day-to-day functions and requirements of each occupation. It also provides key data on the cognitive and mental requirements for specific occupations. This allows us to: (a) objectively rank occupations according to the mix of knowledge, skills, and abilities they require; and (b) subjectively categorize them based on the variety of tasks they involve.

Next, we validate our labor skill identifications following Frey and Osborne (2017). Frey and Osborne (2017) ranked each O\*NET occupation's skill requirements and its likelihood of being replaced with automation by three metrics: perception, creative intelligence, and social intelligence. Those traits create engineering bottlenecks that significantly and practically limit automation. They classified occupations as low-skill if the estimated probability of automation is 70% or higher and high-skill if it is under 30%. For example, they find that

<sup>&</sup>lt;sup>4</sup>Bureau of Labor Statistics Occupational Employment Projections to 2022 [Link]

many office and administrative support, transportation, and services jobs are at risk.

Table Appendix 1 and Table Appendix 2 list job positions of high-skill/low-risk and lowskill/high-skill requirements, respectively. After carefully reviewing both lists, we found two important patterns worth emphasizing: (1) The majority of O\*NET occupations demand high-skill labor. Specifically, 313 occupations fall under the high-skill category, and only 145 occupations are low-skill. (2) The identification strategies rely on detailed skill/education requirements instead of industries or job titles. For example, although "(regular) Driver" is a low-skill job, "Ambulance Drivers and Attendants" is a high-skill job that requires additional knowledge, skills, and abilities.

Figure 2 plots the shares of total jobs that are denoted as being high (low) risk of machine replacement for each city. Mid-risk/Mid-skill jobs are the omitted category. Consistent with Frey and Osborne (2017), we note that the share of total jobs at low risk of automation is above 50% in each city, but the trend in the share of high-skill job postings is slightly declining. Jobs at low risk of automation tend to require higher skills and are concentrated in higher technology, financial, or service sector industries. The large proportion of high-skill jobs online is not surprising given career websites are historically for high-tech positions. On the other hand, the share of jobs noted as being at high risk for machine replacement is relatively stable with slight positive trend across each city – again, consistent with the growth in on-line job position advertisement.

In order to gain more insights into the job advertisements, we utilize machine learning textual analysis techniques to identify high-frequency keywords and phrases used in each type of job advertisement as revealed in the rich job advertisement data<sup>5</sup>. Figure 7, and Figure 8 display the most common requirements employers seek in low automation risk job ads and high automation risk job ads, respectively. The most common qualifications for high-skill jobs are college degrees, two to five years of relevant experience, communication skills, computer programming skills, problem-solving skills, and management skills. In contrast, the level

 $<sup>{}^{5}</sup>$ See Ambrose et al. (2020), Shen and Wilkoff (2020), and Shen and Ross (2021) for discussion of textual analysis using machine learning.

of education requirement for high automation risk jobs is much lower (high school degrees or diploma equivalent) than those of high-skill jobs (bachelor's degree). The required skills for high automation risk jobs are generic, such as basic written/verbal/oral communication skills. Those findings are consistent with Frey and Osborne (2017) who document that office and administrative support, transportation, and services jobs are at the highest risk of being replaced by machines. They are also consistent with our earlier finding that jobs at low risk of automation require higher skills and are concentrated in information technologies and financial industries.

#### 2.3 Commercial Real Estate Leases and Transactions Data

We focus on office and industrial properties in this study. Office and industrial property returns are most likely to respond to changes in high and low-skill worker demand. Thus, we match the employment data to information on individual leases from CompStak, an industry leading provider of data on commercial leases and property sales. We collected detailed data on 39,104 office leases and 10,733 industrial leases covering the period from 2009 to 2020. The data contains information on the effective rent (contract rent incorporating the effect of lease concessions), property type and quality (building class), lease term, percent of building represented by the lease, and the date of the transaction. Figure 3 displays the frequency count of office and industrial leases by lease execution year. Office lease growth increased substantially from 2010 to 2017, however we see substantial heterogeneity in lease counts across markets. For example, Houston saw a dramatic decline in lease activity in 2018 while Atlanta remained relatively flat. We also observe differences in industrial lease activity across markets. For example, the Atlanta market experienced a growing trend in the industrial sector while Houston was relatively flat to declining over the sample period.

We also collected detailed information on industrial and office property sale transactions from CompStak. The data contain information on 9,166 industrial property transactions and 6,203 office building sales. Figure 4 shows the distribution of property sale transactions for Atlanta, Houston, and Miami. Again, we find different patterns in the property sale activity across markets. For example, Atlanta appears to have a growing trend in sales while Houston and Miami experienced a marked decline in sale activity following 2017. Interestingly, in contrast to the lease data we note that Miami has the highest count of property sale transactions. Miami accounts for 56% of all property sale transactions in the sample but only 20% and 11% of industrial and office lease activity, respectively, in the sample. In contrast, Houston represents only 8.7% of the property sale transactions but accounts for 49.7% of the lease activity.

Table 1 provides the summary statistics by property type and location. As expected, office leases command substantially higher effective rents per square foot (\$20.51 versus \$6.21). In terms of lease size, we note that the average office lease represents approximately 4% of the total building size whereas the typical industrial lease accounts for 31% of the building. We also note that lease terms are about 5-years for both property types. All the findings discussed above are consistent across all three cities in our sample. After merging the lease data with job announcements by tenant/employer names, we note that 7% of the office tenants and 8% of the industrial tenants placed at least one job position advertisement one year before they signed the lease. Furthermore, 5% of office tenants and 6% of industrial tenants had a job announcement two years prior to executing a new lease. The percentage of tenants that made job announcements three years prior to them signing a lease dropped to 4% for offices and 5% for industrial properties. Interestingly, we find little difference in skill levels for the jobs. For example, 3% of the tenants advertised positions classified as high-skill one year before the lease execution while 6% of office tenants and 6% of industrial tenants advertised positions classified as low skill. Finally, we note that about 3% of the office and 4% of the industrial tenants advertised both high-skill and low-skill positions 1 year before the lease was executed.

## 3 Empirical Methods

We employ the following empirical specifications via ordinary least squares (OLS) to test the link between employment demand (as proxied by job advertisements) and lease rent.

$$y_{it} = \alpha + \beta X_i + \gamma \Sigma_{n=1}^3 Z_{i,t-n} + \lambda \Gamma + \sigma \Sigma_{k=1}^3 Q E_k + \varepsilon_{it}$$
(1)

where  $y_{it}$  represents the natural log of effective rent for lease *i* at time *t*,  $X_i$  is matrix of lease characteristics (e.g. lease size as a % of building size, building size, lease term),  $Z_{i,t-n}$  is a set of variables indicating whether the tenant had at least one job announcement *n* year(s) prior to an observed lease contract, and  $\Gamma$  is a set of fixed effects to control for year-quarter of lease signing, building quality (class), location (city). Since monetary policies might also affect rent, we also control for three monetary policy regimes (quantitative easing) being pursued by the Federal Reserve during our sample period following Luck and Zimmermann (2020).  $QE_1$  is an indicator variable that is set to 1 if the sample is from March 2009 to March 2010,  $QE_2$  is set to 1 from November 2010 to June 2012, and  $QE_3$  is set to 1 if the sample is from January 2013 to October 2014. We cluster standard errors by city and year.

To the extent that labor demand signals greater demand for space, then we would expect positive estimated coefficients for the job announcement variables ( $\gamma > 0$ ).

To further investigate whether a certain type of job vacancies drive space demand, we test the following model specification in which an employer had vacancies for high-risk and low-risk jobs in year t.

$$y_{it} = \alpha + \beta X_i + \gamma \Sigma_{n=1}^3 Lowrisk_{i,t-n} + \iota \Sigma_{n=1}^3 Highrisk_{i,t-n} + \lambda \Gamma + \sigma \Sigma_{k=1}^3 QE_k + \varepsilon_{it}$$
(2)

#### 4 Empirical Results

In this section, we formally test the link between employment demand (as proxied by job advertisements) lease rent.

Table 2 shows the estimated coefficients for office and industrial properties separately. Columns (1) and (3) focus on the simple effects of any job announcement regardless of skill level (Equation 1) while columns (2) and (4) focus on the effects of jobs differentiated by skill level (Equation 2). We first note that across both specifications the lease characteristic variables are statistically significant and have the expected sign. For industrial properties, the effective rents are inversely correlated with building size. In addition, industrial leases that account for a larger fraction of the total building have lower effective rents. These results suggest a size discount for industrial space. For example, a 1% increase in the lease as a percent of the building size decreases the effective rent by 0.74%. We also see a discount for longer term industrial leases. We find no significant differences in effect rents on leases entered during periods when the Federal Reserve engaged in Quantitative Easing than during non-QE periods for industrial leases.

Consistent with the office market and space usage being different than the industrial market, we find differences in the pricing of building and lease characteristics. For office space we find that leases in larger buildings command higher effective rents. This is consistent with larger office buildings typically having better locations and offering agglomeration opportunities for tenants. The marginally significant (at the 10% level) and negative coefficient on lease size as a fraction of total building implies a small discount when acquiring a larger percentage of the building. For example, a 1% increase in the lease size relative to the building size corresponds to a 0.03% reduction in the effective rent. In addition, the positive and statistically significant (at the 1% level) coefficient for lease term for office buildings is consistent with an upward sloping lease term structure in the office market. Finally, we note that the effective rents on office leases were significantly lower during the period between November 2010 and June 2012, when the Federal Reserve engaged in its second Quantitative

Easing initiative.

Turning to the variables indicating whether the tenant had job announcements while also seeking new space (*Tenant Job Ad*), we find a positive relation between employment growth and lease rates. For industrial properties, in column (1) we note a positive and statistically significant (at the 1% level) coefficient for the variable indicating that tenants that advertised a job one year prior to when the lease was signed paid significantly higher effective rents than tenants who did not advertise a position. The coefficient indicates that industrial tenants experiencing employment growth pay approximately 9.1% higher effective lease rates, on average, than tenants who did not have a position announcement in the year prior to when the lease was signed. We note that employment demand has a persistent but diminishing impact on lease rates as we see positive, albeit not statistically significant, coefficients for the variable indicating that the tenant had a job ad two and three years prior to the lease year. In column (3), we find similar, albeit a slightly smaller, effects for office properties. The estimated coefficients suggest that firms with job announcements in the year prior to leasing office space paid effective rents that were 3.2% higher than firms that did not have a job posting online. Again, the effect dissipates to 2.1% (significant at the 10% level) for job postings two-years prior to the lease year and is positive (0.5%) but not statistically significant) for job announcements three-years prior to the lease year.

In columns (2) and (4) we turn to focus on the type of job announcement, either high or low risk of automation. Again, jobs at high risk of automation tend to be lower skilled while jobs at low risk of being replaced with automation are typically higher skilled. The coefficients measure the effect on rent relative to jobs considered to be at medium risk of automation. Considering industrial properties (column (2)), the coefficients for highrisk/low-skill jobs are not statistically significant. In contrast, the estimated coefficient for the variable indicating whether the firm placed an announcement in the year prior to the lease start for a job at low risk of automation is positive and statistically significant (at the 1% level). The estimated coefficient implies that the effective rent for industrial tenants having growth in low-risk-of-automation jobs is 14.6% higher than tenants that did not advertise such positions. This is consistent with landlords recognising that firms that have greater demand for jobs at low risk of automation have a lower elasticity of substitution between capital (real estate) costs and labor costs. As a result, landlords are able to command higher rents from these firms<sup>6</sup>.

We also see that for office properties (column (4)) the estimated coefficient for the variable indicating a firm that advertised in the year prior to leasing a position with a low risk of automation is positive and statistically significant (at the 1% level). The estimated coefficient indicates that firms advertising demand for low automation risk jobs pay effective rents that are 2.8% higher than firms that did not advertise such demand. We note that this effect carries over to firms placing low automation risk ads two years prior to leasing as well.

We note several differential impacts of tenant employment demand on effective rents between office and industrial properties. First, we find that the sensitivity of job announcements for industrial leases is larger than for office leases. The estimated coefficients imply that industrial tenants with job announcements in the year they sign the lease pay 9.1% more than similar tenants while office tenants pay approximately 3.2% more. Turning to the differentiation in job automation risk, we see that office tenants pay 2.8% higher effective rents when advertising low automation risk jobs in the lease year while industrial tenants pay 14.6% more. These results are intuitive. Industrial space usage is negatively correlated with job automation – automation reduces the need for space for employees. Firms that are actively expanding their warehouse/industrial operations but are employing more workers that cannot be replaced by equipment are willing to pay higher rents for that space.

Overall, our micro analysis of effective rent is consistent with the theoretical predictions outlined in Eisfeldt et al. (2021). In calibrating their theoretical model with time series of factor shares data, Eisfeldt et al. (2021) pin down the elasticity of substitution between

<sup>&</sup>lt;sup>6</sup>The positive coefficient is also consistent with firms having to provide higher quality space to attract and retain employees who perform tasks that are at lower risk from automation. However, the inclusion of building class fixed effects provides a control for building quality.

physical capital and human capital (high skilled labor) to 0.66, which implies a high degree of complementarity between capital and high skilled labor. Thus, our empirical results demonstrating that firms expanding their pool of high skilled workers (those at low risk of automation) face higher lease costs is consistent with the complementarity of capital and labor. Furthermore, we do not find a significant link between firm demand for lower skilled labor (high risk of automation) and effective lease costs. This suggests that landlords recognize the substitutability associated with low skilled labor and capital, and thus do not increase rents in response to greater lower skilled labor demand.

# 5 Discussion: Commercial Rent Index and Employment Measures

In this section, we investigate the macro level links between lease rates and employment growth in high and low automation risk jobs. Our objective is to determine whether aggregate employment growth responds to changes in physical capital costs.

To begin, we create industrial and office rent indexes for Atlanta, Houston, and Miami using the effective rent per square foot (R) for office and industrial leases contained in the CompStak database that were originated January 2010 and December 2019. As noted in section 2, Compstak reports information on 39,104 office leases and 10,733 industrial leases across the three cities.

We employ a simple hedonic pricing model that conditions the effective rent on lease characteristics to create a monthly index. Following Hill (2011), we estimate the following semi-log model:

$$y = Z\beta + D\delta + \varepsilon \tag{3}$$

where y = log(R), Z is a matrix of property characteristics (building size, lease size, lease

term, and building quality or class), and D is a matrix of year-month dummy variables. In this formulation,  $\beta$  is a vector of shadow prices for the lease characteristics,  $\delta$  is a vector of year-month prices, and  $\varepsilon$  is a vector or random errors. From this model, we can compute a property quality and characteristic adjusted rent index for each city by taking the exponential of the respective estimated  $\delta_t$  coefficients:  $\hat{R}_t = exp(\hat{\delta}_t)$ .

Figures 5 and 6 show the result industrial property and office property monthly qualityadjusted effective rent indexes, respectively, for each city. We note significant heterogeneity in the rental indexes by property and market. For example, industrial and office effective rents in Atlanta increased substantially between 2010 and 2019. Whereas, we see that Houston experienced less overall rent growth. In particular, the Houston office market is relatively flat with less volatility. On the other hand, Figures 5 and 6 indicate that Miami experienced much greater office rent volatility with a positive upward trend after 2016. Furthermore, we note that the industrial property rent indexes for Atlanta and Houston have greater volatility than their respective office indexes due to the fewer observations.

To focus on the substitution between capital (rent cost) and labor (employment), we estimate the following model of monthly changes in the shares of jobs with low and high risk of automation:

$$ln(\Delta S_t^i) = \alpha + \sum_{j=1}^{1} 2\beta_j^I ln(R_{t-j}^I) + \sum_{j=1}^{1} 2\beta_j^O ln(R_{t-j}^O) + \delta_2 Q E_2 + \delta_3 Q E_3 + \lambda \Gamma + \varepsilon_t$$

$$(4)$$

where  $\Delta S_t^i i = L, H$  represents the month-to-month change in the share of low automation risk jobs or high automation risk jobs,  $ln(R_t^I)$  and  $ln(R_t^O)$  are the log industrial and office rent indexes,  $QE_2$  and  $QE_3$  are dummy variables denoting the periods associated with the Federal Reserve Quantitative Easing program (November 2010-June 2012 and January 2013-October 2014),  $\Gamma$  is a set of city and year fixed effects, and  $\varepsilon_t$  is the error term. The specification in equation (4) provides for a flexible response in job announcements to aggregate capital costs of industrial and office property markets with up to a 12-month lag.

We estimate equation (4) separately for the change in the share of low and high automation risk jobs (high skilled and low skilled, respectively) as well as the month-to-month change in total job announcements. Table 3 presents the OLS regression coefficient estimates. Interestingly, we do not see a strong impact of the lagged rent indexes on the change in job announcements. Only the dummy variable denoting the period associated with QE3 is negative and statistically significant (at the 10% level) in the regression of low automation risk job ads and total job ads. Since lagged labor demand across different years might be serially correlated, we propose to use LASSO regression, a machine learning analysis method, to performs variable selection to enhance the accuracy and interpretability of the model in this section.

## 6 Conclusion

This study represents a first attempt at conducting a micro level analysis focused on the assessing whether firm space usage and labor are complements or substitutes. Motivated by the theoretical insights in Eisfeldt et al. (2021), we examine the trade-off of effective rents in office and industrial property with measures of employment demand for high and low skill workers. To do so, we use data from Burning Glass Technologies that compiles labor demand data classified into categories based on whether the position is at high or low risk of automation.

Consistent with recent findings suggesting that high skilled labor and physical capital are complements, our empirical analysis reveals that firms advertising high skilled jobs face higher effective rents. In contrast, we find no statistically significant link between demand for low skilled labor and the cost of space.

## References

- Ambrose, B. W., Y. Han, S. Korgaonkar, and L. Shen (2020). Information in financial contracts: Evidence from cmbs pooling and servicing agreements. *SSRN*.
- Böheim, R. and M. P. Taylor (2002). Tied down or room to move? investigating the relationships between housing tenure, employment status and residential mobility in britain. Scottish Journal of Political Economy 49(4), 369–392.
- Cobb, C. W. and P. H. Douglas (1928). A theory of production. The American Economic Review 18(1), 139–165.
- Dalton, M. R., L. B. Kahn, and A. I. Mueller (2018). Do online job postings capture job vacancies? an analysis of matched online postings and vacancy survey data. *Memo 108*(7), 1737–72.
- Eisfeldt, A. L., A. Falto, and M. Z. Xiaolan (2021). Human capitalists. *NBER Working Paper 28815*.
- Eliasson, K., U. Lindgren, and O. Westerlund (2003). Geographical labour mobility: migration or commuting? *Regional studies* 37(8), 827–837.
- Frey, C. B. and M. A. Osborne (2017). The future of employment: How susceptible are jobs to computerisation? *Technological forecasting and social change 114*, 254–280.
- Glaeser, E. L. (2008). *Cities, Agglomeration and Spatial Equilibrium*. Oxford University Press.
- Hershbein, B. and L. B. Kahn (2018). Do recessions accelerate routine-biased technological change? evidence from vacancy postings. *American Economic Review* 108(7), 1737–72.
- Hill, R. (2011). Hedonic price indexes for housing. OECD Statistics Working Papers (36).
- Karabarbounis, L. and B. Neiman (2014). The global decline of the labor share. *The Quarterly Journal of Economics* 129(1), 61–104.
- Krusell, P., L. E. Ohanian, J.-V. Ríos-Rull, and G. L. Violante (2000). Capital-skill complementarity and inequality: A macroeconomic analysis. *Econometrica* 68(5), 1029–1053.
- Luck, S. and T. Zimmermann (2020). Employment effects of unconventional monetary policy: Evidence from qe. *Journal of Financial Economics* 135(3), 678–703.
- Molloy, R., C. L. Smith, and A. Wozniak (2017). Job changing and the decline in longdistance migration in the united states. *Demography* 54(2), 631–653.
- Ohanian, L., M. Orak, and S. Shen (2021). Revisiting capital-skill complementarity, inequiality, and labor share. *NBER Working Paper 28747*.
- Pirinsky, C. and Q. Wang (2006). Does corporate headquarters location matter for stock returns? The Journal of Finance 61(4), 1991–2015.

- Rosenthal, S. S., W. C. Strange, and J. A. Urrego (2022). Jue insight: Are city centers losing their appeal? commercial real estate, urban spatial structure, and covid-19. *Journal of* Urban Economics 127, 103381.
- Saks, R. E. (2008). Job creation and housing construction: Constraints on metropolitan area employment growth. *Journal of Urban Economics* 64(1), 178–195.
- Schnure, C. and A. Thompson (2020). Commercial real estate and migration: What can the employment composition of local job markets tell us about future demand? *SSRN*.
- Shen, L. and S. Ross (2021). Information value of property description: A machine learning approach. *Journal of Urban Economics* 121, 103299.
- Shen, L. and S. Wilkoff (2020). Cleanliness is next to income: The impact of covid-19 on short-term rentals. *Journal of Regional Science*.
- Tuzel, S. and M. B. Zhang (2017). Local risk, local factors, and asset prices. The Journal of Finance 72(1), 325–370.
- Wang, C. and T. Zhou (2021). Face-to-face interactions, tenant resilience, and commercial real estate performance. *Available at SSRN 3743818*.



Figure 1: Monthly Number of Job Postings for Atlanta, Houston, and Miami

Notes: plots the monthly number of job advertisements by city from 2010 to 2020. Consistent with the economic expansion during this decade and the growth in on-line job search platforms, we note a positive trend in job postings with a notable upward increase in 2018.



Figure 2: Shares of High-Risk (Low-Skill) and Low Risk (High-Skill) Job Postings for Atlanta, Houston, and Miami

Notes: This Figure plots the shares of total jobs that are denoted as being high (low) risk of machine replacement for each city from 2010 to 2020. The share of total jobs at low risk of automation is above 50% in each city, but the trend in the share of high-skill job postings is slightly declining. Mid-risk/Mid-skill jobs are the omitted category.



Figure 3: Frequency Distribution of Office and Industrial Leases by Lease Origination Year and City

Notes: This Figure displays the frequency count of office and industrial leases by lease execution year from 2010 to 2020. Office lease growth increased substantially from 2010 to 2017, however we see substantial heterogeneity in lease counts across markets. We also observe differences in industrial lease activity across markets.



Figure 4: Frequency Distribution of Office and Industrial Properties Sold by Transaction Year and City

Notes: This Figure displays the distribution of property sale transactions for Atlanta, Houston, and Miami from 2010 to 2020. Again, we find different patterns in the property sale activity across markets. For example, Atlanta appears to have a growing trend in sales while Houston and Miami experienced a marked decline in sale activity following 2017. Interestingly, in contrast to the lease data we note that Miami has the highest count of property sale transactions. In contrast, Houston represents only 8.7% of the property sale transactions but accounts for 49.7% of the lease activity.



Figure 5: Industrial Property Rent Indexes for Atlanta, Houston, and Miami



Figure 6: Office Property Rent Indexes for Atlanta, Houston, and Miami



Figure 7: Keywords in Low-Risk Job Advertisements

Notes: This figure displays the most frequent characteristics employers seek in the potential job candidates for high-skill (low automation risk) jobs. The most common qualifications for high-skill jobs are college degrees, two to five years of relevant experience, communication skills, computer programming skills, problem-solving skills, and management skills.

Figure 8: Keywords in High-Risk Job Advertisements

ead write <sup>helping people</sup> health insurance sa dle d U property casualty strong organi zational tracking code moderately complex admini support σ accounts payable cash handling abil proficiency\_microsoft Senior associate skills able degree accounting data entrv sales multiple tasks ance onment insu customers terms as conditions C rative assi adminis t stant sales associate good life deadlines meet envir exceptional customer work effective relationships customersaccounting finance flexible work work effectively ability perform delivery driver third party

Notes: This figure displays the most frequent characteristics employers seek in the potential job candidates for low-skill (high automation risk) jobs. The level of education requirement for those jobs are much lower (high school degrees or diploma equivalent) than those of high-skill jobs (bachelors degree).

|                                                                      |           | Indus     | strial    |           |           | Of        | fice      |           |
|----------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                                                      | Atlanta   | Houston   | Miami     | All       | Atlanta   | Houston   | Miami     | All       |
| Effective Rent                                                       | 6.21      | 9.91      | 9.16      | 8.11      | 22.17     | 18.37     | 27.50     | 20.51     |
|                                                                      | (4.27)    | (6.15)    | (4.68)    | (5.41)    | (7.17)    | (6.09)    | (11.16)   | (7.66)    |
| Building Size                                                        | 173665.33 | 151054.92 | 156252.29 | 162173.29 | 295520.86 | 217619.81 | 242864.41 | 245555.11 |
|                                                                      | (361.62)  | (691.65)  | (50.19)   | (499.39)  | (517.56)  | (483.54)  | (890.29)  | (22.13)   |
| Lease Size / Building Size $(\%)$                                    | 0.34      | 0.26      | 0.33      | 0.31      | 0.06      | 0.03      | 0.06      | 0.04      |
|                                                                      | (0.31)    | (0.31)    | (0.29)    | (0.31)    | (0.13)    | (0.09)    | (0.14)    | (0.11)    |
| Lease Term (months)                                                  | 60.18     | 48.74     | 58.36     | 55.57     | 59.18     | 32.17     | 59.59     | 43.67     |
|                                                                      | (31.19)   | (33.67)   | (30.85)   | (32.52)   | (33.86)   | (29.83)   | (32.76)   | (34.22)   |
| Tenant Job Ad 1 year prior to Lease Year (d)                         | 0.09      | 0.07      | 0.08      | 0.08      | 0.11      | 0.04      | 0.09      | 0.07      |
|                                                                      | (0.29)    | (0.26)    | (0.27)    | (0.28)    | (0.31)    | (0.19)    | (0.28)    | (0.25)    |
| Tenant Job Ad 2 Years Prior to Lease Year (d)                        | 0.07      | 0.06      | 0.06      | 0.06      | 0.08      | 0.03      | 0.06      | 0.05      |
|                                                                      | (0.26)    | (0.23)    | (0.23)    | (0.24)    | (0.27)    | (0.17)    | (0.25)    | (0.22)    |
| Tenant Job Ad 3 Years Prior to Lease Year (d)                        | 0.06      | 0.05      | 0.05      | 0.05      | 0.06      | 0.02      | 0.06      | 0.04      |
|                                                                      | (0.23)    | (0.21)    | (0.22)    | (0.22)    | (0.24)    | (0.15)    | (0.23)    | (0.19)    |
| Tenant High-risk Job Ad 1 year Prior to Lease Year (d)               | 0.05      | 0.04      | 0.04      | 0.04      | 0.05      | 0.02      | 0.06      | 0.03      |
|                                                                      | (0.21)    | (0.20)    | (0.19)    | (0.20)    | (0.22)    | (0.15)    | (0.23)    | (0.18)    |
| Tenant High-risk Job Ad 2 Years Prior to Lease Year (d)              | 0.03      | 0.03      | 0.03      | 0.03      | 0.04      | 0.02      | 0.04      | 0.03      |
|                                                                      | (0.18)    | (0.18)    | (0.18)    | (0.18)    | (0.19)    | (0.12)    | (0.20)    | (0.16)    |
| Tenant High-risk Job Ad 3 Years Prior to Lease Year (d)              | 0.03      | 0.03      | 0.03      | 0.03      | 0.03      | 0.01      | 0.04      | 0.02      |
|                                                                      | (0.16)    | (0.16)    | (0.16)    | (0.16)    | (0.17)    | (0.11)    | (0.19)    | (0.14)    |
| Tenant Low-risk Job Ad 1 Year Prior to Lease Year (d)                | 0.08      | 0.05      | 0.06      | 0.06      | 0.09      | 0.03      | 0.07      | 0.06      |
|                                                                      | (0.26)    | (0.23)    | (0.23)    | (0.25)    | (0.29)    | (0.18)    | (0.26)    | (0.23)    |
| Tenant Low-risk Job Ad 2 Year Prior to Lease Year (d)                | 0.06      | 0.04      | 0.05      | 0.05      | 0.07      | 0.02      | 0.06      | 0.04      |
|                                                                      | (0.23)    | (0.21)    | (0.22)    | (0.22)    | (0.26)    | (0.16)    | (0.23)    | (0.20)    |
| Tenant Low-risk Job Ad 3 Years Prior to Lease Year (d)               | 0.05      | 0.04      | 0.04      | 0.04      | 0.06      | 0.02      | 0.05      | 0.03      |
|                                                                      | (0.21)    | (0.19)    | (0.19)    | (0.20)    | (0.23)    | (0.14)    | (0.21)    | (0.18)    |
| Tenant with High and Low-risk Job Ads 1 year prior to Lease Year (d) | 0.04      | 0.03      | 0.03      | 0.04      | 0.04      | 0.02      | 0.05      | 0.03      |
|                                                                      | (0.20)    | (0.18)    | (0.18)    | (0.19)    | (0.21)    | (0.13)    | (0.21)    | (0.17)    |
| Number of Leases                                                     | 2,937     | 2,435     | 1,128     | 6,500     | 9,538     | 16,785    | 2,854     | 29,177    |
|                                                                      |           |           |           |           |           |           |           |           |

Table 1: Summary Statistics

Notes: This table presents the summary statistics by property types in Atlanta, Houston, and Miami from 2010 to 2020.

| Parameter                                                   | Indu          | strial        | Of            | fice          |
|-------------------------------------------------------------|---------------|---------------|---------------|---------------|
|                                                             | (1)           | (2)           | (3)           | (4)           |
| Lease Size / Building Size (%)                              | -0.744***     | -0.749***     | -0.031*       | -0.031*       |
|                                                             | (0.024)       | (0.024)       | (0.018)       | (0.018)       |
| Log(Building Size) (SF)                                     | -0.172***     | -0.173***     | 0.032***      | 0.033***      |
|                                                             | (0.007)       | (0.007)       | (0.002)       | (0.002)       |
| Log(Lease Term)                                             | -0.036***     | -0.036***     | $0.085^{***}$ | $0.085^{***}$ |
|                                                             | (0.010)       | (0.010)       | (0.002)       | (0.002)       |
| QE1 (March 2009-March2010)                                  | -0.015        | -0.015        | 0.010         | 0.010         |
|                                                             | (0.061)       | (0.061)       | (0.018)       | (0.018)       |
| QE2 (Nov 2010-June2012)                                     | 0.026         | 0.026         | -0.049***     | -0.049***     |
|                                                             | (0.040)       | (0.040)       | (0.012)       | (0.012)       |
| QE3 (Jan 2013-Oct2014)                                      | -0.019        | -0.017        | -0.006        | -0.006        |
|                                                             | (0.044)       | (0.044)       | (0.013)       | (0.013)       |
| Tenant Job Ad 1 Year Prior to Lease Year(d)                 | $0.091^{***}$ |               | $0.032^{***}$ |               |
|                                                             | (0.031)       |               | (0.009)       |               |
| Tenant Job Ad 2 Years Prior to Lease Year(d)                | 0.045         |               | $0.021^{*}$   |               |
|                                                             | (0.038)       |               | (0.011)       |               |
| Tenant Job Ad 3 Years Prior to Lease Year(d)                | 0.028         |               | 0.005         |               |
|                                                             | (0.038)       |               | (0.012)       |               |
| Tenant High-risk Job Ad in Year Prior to Lease Year (d)     |               | 0.001         |               | 0.014         |
|                                                             |               | (0.047)       |               | (0.013)       |
| Tenant High-risk Job Ad Two Years Prior to Lease Year (d)   |               | 0.006         |               | -0.012        |
|                                                             |               | (0.056)       |               | (0.016)       |
| Tenant High-risk Job Ad Three Years Prior to Lease Year (d) |               | -0.073        |               | 0.022         |
|                                                             |               | (0.061)       |               | (0.017)       |
| Tenant Low-risk Job Ad 1 Year Prior to Lease Year (d)       |               | $0.146^{***}$ |               | $0.028^{***}$ |
|                                                             |               | (0.039)       |               | (0.011)       |
| Tenant Low-risk Job Ad 2 Years Prior to Lease Year (d)      |               | 0.052         |               | $0.025^{*}$   |
|                                                             |               | (0.047)       |               | (0.013)       |
| Tenant Low-risk Job Ad 3 Years Prior to Lease Year (d)      |               | 0.060         |               | -0.013        |
|                                                             |               | (0.048)       |               | (0.014)       |
| Building Class Fixed Effects                                | Yes           | Yes           | Yes           | Yes           |
| Location (City) Fixed Effects                               | Yes           | Yes           | Yes           | Yes           |
| Lease Year Fixed Effects                                    | Yes           | Yes           | Yes           | Yes           |
| $R^2$                                                       | 0.470         | 0.472         | 0.369         | 0.369         |
| Number of Observations                                      | 55,070        | 55,070        | 29,041        | 29,041        |

Table 2: OLS Regression of Effective Rent by Property Type

Notes: This table displays the analysis results of the impact of job advertisements on effective rents for industrial properties and offices. We cluster standard errors by city and year.

| Parameter                               | High Bick          | Low Rick       | All Jobs       |
|-----------------------------------------|--------------------|----------------|----------------|
| Industrial Bent (t-1)                   | _0.08183           | _0.08004       | -0.09504       |
| multina nent (t-1)                      | (0.077)            | (0.077)        | (0.0304)       |
| Industrial Dant (t. 2)                  | (0.011)            | (0.077)        | (0.074)        |
| muustnai Rent (t-2)                     | -0.07574           | -0.09719       | -0.09179       |
|                                         | (0.100)            | (0.105)        | (0.102)        |
| Industrial Rent (t-3)                   | -0.14052           | -0.19401       | -0.18311       |
|                                         | (0.130)            | (0.130)        | (0.125)        |
| Industrial Rent (t-4)                   | -0.08222           | -0.07359       | -0.08157       |
|                                         | (0.149)            | (0.148)        | (0.143)        |
| Industrial Rent (t-5)                   | -0.11892           | -0.10228       | -0.11185       |
|                                         | (0.162)            | (0.161)        | (0.156)        |
| Industrial Rent (t-6)                   | -0.06298           | -0.03971       | -0.04831       |
|                                         | (0.169)            | (0.169)        | (0.163)        |
| Industrial Rent (t-7)                   | -0.06889           | -0.05776       | -0.06551       |
|                                         | (0.172)            | (0.171)        | (0.165)        |
| Industrial Rent (t-8)                   | -0.05760           | -0.06658       | -0.06757       |
|                                         | (0.164)            | (0.163)        | (0.157)        |
| Industrial Rent (t-9)                   | -0.03220           | -0.02027       | -0.01569       |
|                                         | (0.149)            | (0.148)        | (0.143)        |
| Industrial Rent (t-10)                  | 0.02508            | -0.03707       | -0.00632       |
|                                         | (0.129)            | (0.128)        | (0.124)        |
| Industrial Rent (t-11)                  | 0.01373            | 0.02616        | 0.02552        |
|                                         | (0.103)            | (0.103)        | (0.099)        |
| Industrial Rent (t-12)                  | 0.09044            | 0.04770        | 0.07174        |
|                                         | (0.075)            | (0.074)        | (0.072)        |
|                                         | (0.0.0)            | (0.01-)        | (0.01-)        |
| Office Rent (t-1)                       | -0.02083           | -0.08256       | -0.06098       |
| 0 (1 -)                                 | (0.131)            | (0.130)        | (0.126)        |
| Office Rent $(t-2)$                     | -0.02158           | -0.02467       | -0.01904       |
|                                         | (0.165)            | (0.164)        | (0.159)        |
| Office Rept $(t_{-3})$                  | -0.02981           | 0.04805        | 0.01601        |
|                                         | (0.184)            | (0.183)        | (0.177)        |
| Office Rept $(t_{-4})$                  | _0 15282           | _0 07020       | -0 10852       |
| Onice Rent (t-4)                        | (0.188)            | (0.187)        | (0.181)        |
| Office Rept $(t, 5)$                    | 0.100)             | 0.03082        | 0.03763        |
| Once Rent (t-5)                         | -0.02522           | -0.03082       | -0.03703       |
| Office Point $(t, 6)$                   | (0.194)<br>0.07184 | (0.193)        | 0.06067        |
| Once Rent (t-0)                         | (0.901)            | (0.200)        | (0.102)        |
| $O_{\text{max}} = D_{\text{max}} (4.7)$ | (0.201)            | (0.200)        | (0.195)        |
| Office Rent (t-7)                       | -0.03314           | -0.02092       | -0.04092       |
|                                         | (0.202)            | (0.201)        | (0.194)        |
| Office Rent (t-8)                       | -0.12523           | -0.10578       | -0.10536       |
|                                         | (0.195)            | (0.194)        | (0.188)        |
| Office Rent (t-9)                       | -0.07180           | -0.07291       | -0.06976       |
|                                         | (0.188)            | (0.187)        | (0.181)        |
| Office Rent (t-10)                      | -0.15164           | -0.21032       | -0.19408       |
|                                         | (0.181)            | (0.180)        | (0.174)        |
| Office Rent $(t-11)$                    | -0.09163           | -0.01084       | -0.04129       |
|                                         | (0.162)            | (0.161)        | (0.156)        |
| Office Rent $(t-12)$                    | 0.17734            | 0.11887        | 0.14691        |
|                                         | (0.130)            | (0.129)        | (0.125)        |
|                                         |                    |                |                |
| QE2 (Nov 2020-June2012)                 | -0.00162           | -0.01444       | -0.00626       |
|                                         | (0.075)            | (0.074)        | (0.072)        |
| QE3 (Jan 2013-Oct2014)                  | -0.11457           | $-0.14548^{*}$ | $-0.13902^{*}$ |
|                                         | (0.081)            | (0.081)        | (0.078)        |
| R-Sq                                    | 0.0825             | 0.0831         | 0.0864         |
| Observations                            | 318                | 318            | 318            |
| Location (city) Fixed Effects           | Yes                | Yes            | Yes            |
| Year Fixed Effects                      | Yes                | Yes            | Yes            |

Table 3: OLS Regression Testing Link Between Job Announcements and Market Rents

Note: This table reports the estimated coefficients for the analysis on the impact of CRE rent index on labor demand. Robust standard errors are reported in parentheses. \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

# Table Appendix 1: High Skill Occupation

| Job Code | Job Title                                                         |
|----------|-------------------------------------------------------------------|
| 11101100 | Chief Executives                                                  |
| 11101103 | Chief Sustainability Officers                                     |
| 11102100 | General and Operations Managers                                   |
| 11201100 | Advertising and Promotions Managers                               |
| 11202100 | Marketing Managers                                                |
| 11202200 | Sales Managers                                                    |
| 11302100 | Computer and Information Systems Managers                         |
| 11303101 | Treasurers and Controllers                                        |
| 11305100 | Industrial Production Managers                                    |
| 11305101 | Quality Control Systems Managers                                  |
| 11306100 | Purchasing Managers                                               |
| 11312100 | Human Resources Managers                                          |
| 11313100 | Training and Development Managers                                 |
| 11902100 | Construction Managers                                             |
| 11903100 | Education and Childcare Administrators, Preschool and Daycare     |
| 11903200 | Education Administrators, Kindergarten through Secondary          |
| 11903300 | Education Administrators, Postsecondary                           |
| 11904100 | Architectural and Engineering Managers                            |
| 11905100 | Food Service Managers                                             |
| 11908100 | Lodging Managers                                                  |
| 11911100 | Medical and Health Services Managers                              |
| 11912100 | Natural Sciences Managers                                         |
| 11912101 | Clinical Research Coordinators                                    |
| 11912102 | Water Resource Specialists                                        |
| 11915100 | Social and Community Service Managers                             |
| 11916100 | Emergency Management Directors                                    |
| 11919900 | Managers, All Other                                               |
| 11919901 | Regulatory Affairs Managers                                       |
| 11919902 | Compliance Managers                                               |
| 11919908 | Loss Prevention Managers                                          |
| 13101100 | Agents and Business Managers of Artists, Performers, and Athletes |
| 13102200 | Wholesale and Retail Buyers, Except Farm Products                 |
| 13104101 | Environmental Compliance Inspectors                               |
| 13104103 | Equal Opportunity Representatives and Officers                    |
| 13104104 | Government Property Inspectors and Investigators                  |
| 13104106 | Coroners                                                          |
| 13104107 | Regulatory Affairs Specialists                                    |
| 13107100 | Human Resources Specialists                                       |
| 13107500 | Labor Relations Specialists                                       |
| 13108100 | Logisticians                                                      |
| 13108102 | Logistics Analysts                                                |
| 13111100 | Management Analysts                                               |
| 13112100 | Meeting, Convention, and Event Planners                           |
| 13113100 | Fundraisers                                                       |
| 13114100 | Compensation, Benefits, and Job Analysis Specialists              |
| 13115100 | Training and Development Specialists                              |
| 13119900 | Business Operations Specialists, All Other                        |
| 13119904 | Business Continuity Planners                                      |
| 13119905 | Sustainability Specialists                                        |
| 13119906 | Unline Merchants                                                  |
| 13205100 | Financial and Investment Analysts                                 |
| 13206100 | Financial Examiners                                               |
| 13207100 | Credit Counselors                                                 |
| 13209901 | Financial Quantitative Analysts                                   |
| 13209904 | Fraud Examiners, Investigators and Analysts                       |
| 15201100 | Actuaries                                                         |
| 15203100 | Operations Research Analysts                                      |
| 15204100 | Statisticians                                                     |
| 15204101 | Biostatisticians                                                  |

| Job Code | Job Title                                                             |
|----------|-----------------------------------------------------------------------|
| 17101100 | Architects, Except Landscape and Naval                                |
| 17101200 | Landscape Architects                                                  |
| 17102200 | Surveyors                                                             |
| 17102201 | Geodetic Surveyors                                                    |
| 17201100 | Aerospace Engineers                                                   |
| 17203100 | Bioengineers and Biomedical Engineers                                 |
| 17204100 | Chemical Engineers                                                    |
| 17205100 | Civil Engineers                                                       |
| 17205101 | Transportation Engineers                                              |
| 17206100 | Computer Hardware Engineers                                           |
| 17207100 | Electrical Engineers                                                  |
| 17207200 | Electronics Engineers, Except Computer                                |
| 17207201 | Radio Frequency Identification Device Specialists                     |
| 17208100 | Environmental Engineers                                               |
| 17211102 | Fire-Prevention and Protection Engineers                              |
| 17211200 | Industrial Engineers                                                  |
| 17213100 | Materials Engineers                                                   |
| 17214100 | Mechanical Engineers                                                  |
| 17210100 | Nuclear Engineers                                                     |
| 17210000 | Engineers All Other                                                   |
| 17213300 | Energy Engineers Except Wind and Solar                                |
| 17219905 | Photonics Engineers                                                   |
| 17219908 | Robotics Engineers                                                    |
| 17219911 | Solar Energy Systems Engineers                                        |
| 17302100 | Aerospace Engineering and Operations Technologists and Technicians    |
| 17302600 | Industrial Engineering Technologists and Technicians                  |
| 17302700 | Mechanical Engineering Technologists and Technicians                  |
| 17302900 | Engineering Technologists and Technicians, Except Drafters, All Other |
| 17302901 | Non-Destructive Testing Specialists                                   |
| 17302908 | Photonics Technicians                                                 |
| 19101200 | Food Scientists and Technologists                                     |
| 19102100 | Biochemists and Biophysicists                                         |
| 19102200 | Microbiologists                                                       |
| 19102300 | Zoologists and Wildlife Biologists                                    |
| 19102900 | Biological Scientists, All Other                                      |
| 19102901 | Bioinformatics Scientists                                             |
| 19102903 | Geneticists                                                           |
| 19103102 | Range Managers                                                        |
| 19104100 | Epidemiologists                                                       |
| 19104200 | Medical Scientists, Except Epidemiologists                            |
| 19109900 | Astronomore                                                           |
| 19201100 | Astronomers                                                           |
| 19201200 | 1 Hysicisis<br>Chemists                                               |
| 19203100 | Materials Scientists                                                  |
| 19203200 | Environmental Scientists and Specialists Including Health             |
| 19204101 | Climate Change Policy Analysts                                        |
| 19204102 | Environmental Restoration Planners                                    |
| 19204300 | Hydrologists                                                          |
| 19209901 | Remote Sensing Scientists and Technologists                           |
| 19301100 | Economists                                                            |
| 19302200 | Survey Researchers                                                    |
| 19303200 | Industrial-Organizational Psychologists                               |
| 19303900 | Psychologists, All Other                                              |
| 19305100 | Urban and Regional Planners                                           |
| 19309300 | Historians                                                            |
| 19309400 | Political Scientists                                                  |
| 19309900 | Social Scientists and Related Workers, All Other                      |
| 19309901 | Transportation Planners                                               |
| 19402100 | Biological Technicians                                                |

| Job Code | Job Title                                                                                      |
|----------|------------------------------------------------------------------------------------------------|
| 19409200 | Forensic Science Technicians                                                                   |
| 21101100 | Substance Abuse and Behavioral Disorder Counselors                                             |
| 21101200 | Educational, Guidance, and Career Counselors and Advisors                                      |
| 21101300 | Marriage and Family Therapists                                                                 |
| 21101400 | Mental Health Counselors                                                                       |
| 21101500 | Rehabilitation Counselors                                                                      |
| 21101900 | Counselors, All Other                                                                          |
| 21102100 | Child, Family, and School Social Workers                                                       |
| 21102200 | Healthcare Social Workers                                                                      |
| 21102300 | Mental Health and Substance Abuse Social Workers                                               |
| 21102900 | Social Workers, All Other                                                                      |
| 21109100 | Health Education Specialists                                                                   |
| 21109200 | Probation Officers and Correctional Treatment Specialists                                      |
| 21109300 | Social and Human Service Assistants                                                            |
| 21109400 | Community Health Workers                                                                       |
| 21109900 | Community and Social Service Specialists, All Other                                            |
| 21201100 | Clergy<br>Directory Delivious Activities and Education                                         |
| 21202100 | Directors, Religious Activities and Education                                                  |
| 23101100 | Lawyers                                                                                        |
| 23101200 | Arbitrators Modiators and Conciliators                                                         |
| 25102200 | Business Teachers, Postsecondary                                                               |
| 25102100 | Computer Science Teachers, Postsecondary                                                       |
| 25102200 | Mathematical Science Teachers, Postsecondary                                                   |
| 25103100 | Architecture Teachers, Postsecondary                                                           |
| 25103200 | Engineering Teachers, Postsecondary                                                            |
| 25104200 | Biological Science Teachers, Postsecondary                                                     |
| 25104300 | Forestry and Conservation Science Teachers, Postsecondary                                      |
| 25105200 | Chemistry Teachers, Postsecondary                                                              |
| 25106200 | Area, Ethnic, and Cultural Studies Teachers, Postsecondary                                     |
| 25106300 | Economics Teachers, Postsecondary                                                              |
| 25106600 | Psychology Teachers, Postsecondary                                                             |
| 25106700 | Sociology Teachers, Postsecondary                                                              |
| 25107100 | Health Specialties Teachers, Postsecondary                                                     |
| 25107200 | Nursing Instructors and Teachers, Postsecondary                                                |
| 25108100 | Cyminal Lystics and Law Enforcement Teachers Destacondary                                      |
| 25111100 | Law Taschars Portsocondary                                                                     |
| 25111200 | Social Work Teachers, Postsecondary                                                            |
| 25112100 | Art. Drama and Music Teachers. Postsecondary                                                   |
| 25112200 | Communications Teachers. Postsecondary                                                         |
| 25112300 | English Language and Literature Teachers, Postsecondary                                        |
| 25112400 | Foreign Language and Literature Teachers, Postsecondary                                        |
| 25112500 | History Teachers, Postsecondary                                                                |
| 25112600 | Philosophy and Religion Teachers, Postsecondary                                                |
| 25119400 | Career/Technical Education Teachers, Postsecondary                                             |
| 25119900 | Postsecondary Teachers, All Other                                                              |
| 25201100 | Preschool Teachers, Except Special Education                                                   |
| 25201200 | Kindergarten Teachers, Except Special Education                                                |
| 25202100 | Elementary School Teachers, Except Special Education                                           |
| 25202200 | Middle School Teachers, Except Special and Career/Technical Education                          |
| 25202300 | Career/Technical Education Teachers, Middle School                                             |
| 25203100 | Career/Technical Education Teachers, Secondary School                                          |
| 25205200 | Special Education Teachers, Preschool                                                          |
| 25205900 | Special Education Teachers, All Other                                                          |
| 25301100 | Adult Basic Education, Adult Secondary Education, and English as a Second Language Instructors |
| 25302100 | Self-Enrichment Teachers                                                                       |
| 25309900 | Teachers and Instructors, All Other                                                            |
| 25902100 | Farm and Home Management Educators                                                             |
| 25903100 | Instructional Coordinators                                                                     |
| 25909900 | Educational Instruction and Library Workers. All Other                                         |

| High Skill | Occupation ( | (Continued) |
|------------|--------------|-------------|
|------------|--------------|-------------|

| Job Code             | Job Title                                                     |
|----------------------|---------------------------------------------------------------|
| 27101100             | Art Directors                                                 |
| 27101200             | Craft Artists                                                 |
| 27101300             | Fine Artists, Including Painters, Sculptors, and Illustrators |
| 27101400             | Special Effects Artists and Animators                         |
| 27102100             | Commercial and Industrial Designers                           |
| 27102200             | Fashion Designers                                             |
| 27102300             | Floral Designers                                              |
| 27102400             | Graphic Designers                                             |
| 27102500             | Interior Designers                                            |
| 27102600             | Merchandise Displayers and Window Trimmers                    |
| 27102700             | Set and Exhibit Designers                                     |
| 27102900             | Designers, All Other                                          |
| 27201100             | Actors                                                        |
| 27201203             | Media Programming Directors                                   |
| 27201204             | Talent Directors                                              |
| 27201205             | Media Technical Directors/Managers                            |
| 27202100             | Athletes and Sports Competitors                               |
| 27202200             | Coaches and Scouts                                            |
| 27203100             | Dancers                                                       |
| 27301100             | Dublic Deletions Specialists                                  |
| 27303100             | Editors                                                       |
| 27304100             | Poots I wrigigts and Croative Writers                         |
| 27304303             | Interpreters and Translators                                  |
| 27303100<br>27401400 | Sound Engineering Technicians                                 |
| 27402100             | Photographers                                                 |
| 27403200             | Film and Video Editors                                        |
| 29101100             | Chiropractors                                                 |
| 29102100             | Dentists, General                                             |
| 29102200             | Oral and Maxillofacial Surgeons                               |
| 29102300             | Orthodontists                                                 |
| 29102900             | Dentists, All Other Specialists                               |
| 29103100             | Dietitians and Nutritionists                                  |
| 29104100             | Optometrists                                                  |
| 29105100             | Pharmacists                                                   |
| 29107100             | Physician Assistants                                          |
| 29107101             | Anesthesiologist Assistants                                   |
| 29112200             | Occupational Therapists                                       |
| 29112300             | Physical Therapists                                           |
| 29112400             | Radiation Therapists                                          |
| 29112500             | Recreational Therapists<br>Bospiratory Thorapists             |
| 29112000             | Speech Language Pathologists                                  |
| 29112700             | Exercise Physiologists                                        |
| 29113100             | Veterinarians                                                 |
| 29114100             | Registered Nurses                                             |
| 29114102             | Advanced Practice Psychiatric Nurses                          |
| 29114103             | Critical Care Nurses                                          |
| 29114104             | Clinical Nurse Specialists                                    |
| 29115100             | Nurse Anesthetists                                            |
| 29116100             | Nurse Midwives                                                |
| 29117100             | Nurse Practitioners                                           |
| 29118100             | Audiologists                                                  |
| 29201200             | Medical and Clinical Laboratory Technicians                   |
| 29203100             | Cardiovascular Technologists and Technicians                  |
| 29203200             | Diagnostic Medical Sonographers                               |
| 29203400             | Radiologic Technologists and Technicians                      |
| 29203500             | Magnetic Resonance Imaging Technologists                      |
| 29203100             | Dietetic Technicians                                          |
| 29203300             | symmetric rechnologiets                                       |
| 79709900             | Surgical recimologists                                        |

| Job Code            | Job Title                                                                             |
|---------------------|---------------------------------------------------------------------------------------|
| 29205600            | Veterinary Technologists and Technicians                                              |
| 29205700            | Ophthalmic Medical Technicians                                                        |
| 29206100            | Licensed Practical and Licensed Vocational Nurses                                     |
| 29209100            | Orthotists and Prosthetists                                                           |
| 29209900            | Health Technologists and Technicians, All Other                                       |
| 29209901            | Neurodiagnostic Technologists                                                         |
| 29909100            | Athletic Trainers                                                                     |
| 29909200            | Genetic Counselors                                                                    |
| 29909900            | Healthcare Practitioners and Technical Workers, All Other                             |
| 31201100            | Occupational Therapy Assistants                                                       |
| 31201200            | Occupational Therapy Aides                                                            |
| 31202100            | Physical Therapist Assistants                                                         |
| 31909200            | Medical Assistants                                                                    |
| 33101200            | First-Line Supervisors of Police and Detectives                                       |
| 33109900            | First-Line Supervisors of Protective Service Workers, All Other                       |
| 33302106            | Intelligence Analysts                                                                 |
| 33303100            | Fish and Game Wardens                                                                 |
| 33901100            | Animal Control Workers                                                                |
| 33902100            | Private Detectives and Investigators                                                  |
| 33909100            | Crossing Guards and Flaggers                                                          |
| 35101100            | Chefs and Head Cooks                                                                  |
| 39201100            | Animal Trainers                                                                       |
| 39309300            | Locker Room, Coatroom, and Dressing Room Attendants                                   |
| 39402100            | Funeral Attendants                                                                    |
| 39403100            | Morticians, Undertakers, and Funeral Arrangers                                        |
| 39501200            | Malray Artista, Theotrical and Derformance                                            |
| 39509100            | Shipeone Specialists                                                                  |
| 20601200            | Consistences                                                                          |
| 39001200            | Traval Cuidos                                                                         |
| 39701200            | Childean Workers                                                                      |
| 39901100            | Nannies                                                                               |
| 39903100            | Exercise Trainers and Group Fitness Instructors                                       |
| 39903200            | Recreation Workers                                                                    |
| 39904100            | Residential Advisors                                                                  |
| 39909900            | Personal Care and Service Workers. All Other                                          |
| 41101100            | First-Line Supervisors of Retail Sales Workers                                        |
| 41101200            | First-Line Supervisors of Non-Retail Sales Workers                                    |
| 41304100            | Travel Agents                                                                         |
| 41401100            | Sales Representatives, Wholesale and Manufacturing, Technical and Scientific Products |
| 41401107            | Solar Sales Representatives and Assessors                                             |
| 41903100            | Sales Engineers                                                                       |
| 43101100            | First-Line Supervisors of Office and Administrative Support Workers                   |
| 43503100            | Public Safety Telecommunicators                                                       |
| 45204100            | Graders and Sorters, Agricultural Products                                            |
| 47101100            | First-Line Supervisors of Construction Trades and Extraction Workers                  |
| 47101103            | Solar Energy Installation Managers                                                    |
| 47211100            | Electricians                                                                          |
| 47402100            | Elevator and Escalator Installers and Repairers                                       |
| 47508100            | Helpers–Extraction Workers                                                            |
| 49101100            | First-Line Supervisors of Mechanics, Installers, and Repairers                        |
| 49202200            | Telecommunications Equipment Installers and Repairers, Except Line Installers         |
| 49209500            | Electrical and Electronics Repairers, Powerhouse, Substation, and Relay               |
| 49304200            | Mobile Heavy Equipment Mechanics, Except Engines                                      |
| 49905100            | Electrical Power-Line Installers and Repairers                                        |
| 49905200            | Leiecommunications Line Installers and Repairers                                      |
| 49906200            | Medical Equipment Repairers                                                           |
| 49909200<br>4000000 | Commercial Divers<br>Installation Maintenance and Repair Workers All Other            |
| 43303300            | Instantation, Mannenance, and neDair Workers, All Other                               |

| Job Code | Job Title                                                              |
|----------|------------------------------------------------------------------------|
| 49909901 | Geothermal Technicians                                                 |
| 51101100 | First-Line Supervisors of Production and Operating Workers             |
| 51204100 | Structural Metal Fabricators and Fitters                               |
| 51609200 | Fabric and Apparel Patternmakers                                       |
| 51609300 | Upholsterers                                                           |
| 51609900 | Textile, Apparel, and Furnishings Workers, All Other                   |
| 53201100 | Airline Pilots, Copilots, and Flight Engineers                         |
| 53202100 | Air Traffic Controllers                                                |
| 53301100 | Ambulance Drivers and Attendants, Except Emergency Medical Technicians |
| 53706100 | Cleaners of Vehicles and Equipment                                     |
| 53706400 | Packers and Packagers                                                  |
| Total    | 313                                                                    |

Notes: This table provides a list of high-skill occupations as identified by the U.S. Bureau of Labor Statistics. The BLS suggest that those jobs require high skilled laborers that are unlikely to be replaced by machines. There are 313 distinguish high skill occupations identified by the BLS.

| Job Code | Job Title                                                                |
|----------|--------------------------------------------------------------------------|
| 11311100 | Compensation and Benefits Managers                                       |
| 13102100 | Buyers and Purchasing Agents, Farm Products                              |
| 13103200 | Insurance Appraisers, Auto Damage                                        |
| 13203100 | Budget Analysts                                                          |
| 13204100 | Credit Analysts                                                          |
| 13205300 | Insurance Underwriters                                                   |
| 13207200 | Loan Officers                                                            |
| 13208100 | Tax Examiners and Collectors, and Revenue Agents                         |
| 13208200 | Tax Preparers                                                            |
| 23201100 | Paralegals and Legal Assistants                                          |
| 23209300 | Title Examiners, Abstractors, and Searchers                              |
| 25403100 | Library Technicians                                                      |
| 27202300 | Umpires, Referees, and Other Sports Officials                            |
| 27304200 | Technical Writers                                                        |
| 29201100 | Medical and Clinical Laboratory Technologists                            |
| 29201102 | Cytotechnologists                                                        |
| 29205200 | Pharmacy Technicians                                                     |
| 31909400 | Medical Transcriptionists                                                |
| 31909600 | Veterinary Assistants and Laboratory Animal Caretakers                   |
| 33903100 | Gambling Surveillance Officers and Gambling Investigators                |
| 35201400 | Cooks, Restaurant                                                        |
| 35201500 | Cooks, Short Order                                                       |
| 35202100 | Food Preparation workers                                                 |
| 35303100 | Walters and Waltesses                                                    |
| 25001100 | Dining Boom and Cafetoria Attendants and Bartendar Helpers               |
| 35003100 | Hosts and Hostossos Restaurant Lounge and Coffee Shop                    |
| 37101100 | First Line Supervisors of Housekeeping and Ianitorial Workers            |
| 37301100 | Landscaping and Groundskeeping Workers                                   |
| 37301200 | Pesticide Handlers Spravers and Applicators Vegetation                   |
| 39302100 | Motion Picture Projectionists                                            |
| 39303100 | Ushers, Lobby Attendants, and Ticket Takers                              |
| 39509200 | Manicurists and Pedicurists                                              |
| 39701100 | Tour Guides and Escorts                                                  |
| 41201100 | Cashiers                                                                 |
| 41202100 | Counter and Rental Clerks                                                |
| 41202200 | Parts Salespersons                                                       |
| 41203100 | Retail Salespersons                                                      |
| 41302100 | Insurance Sales Agents                                                   |
| 41901200 | Models                                                                   |
| 41902100 | Real Estate Brokers                                                      |
| 41902200 | Real Estate Sales Agents                                                 |
| 41904100 | Telemarketers                                                            |
| 41909100 | Door-to-Door Sales Workers, News and Street Vendors, and Related Workers |
| 41909900 | Sales and Related Workers, All Other                                     |
| 43201100 | Switchboard Operators, including Answering Service                       |
| 43202100 | Bill and Account Collectors                                              |
| 43303100 | Bookkeeping Accounting and Auditing Clerks                               |
| 43305100 | Pavroll and Timekeeping Clerks                                           |
| 43306100 | Procurement Clerks                                                       |
| 43307100 | Tellers                                                                  |
| 43401100 | Brokerage Clerks                                                         |
| 43402100 | Correspondence Clerks                                                    |
| 43407100 | File Clerks                                                              |
| 43408100 | Hotel, Motel, and Resort Desk Clerks                                     |
| 43411100 | Interviewers, Except Eligibility and Loan                                |
| 43412100 | Library Assistants, Clerical                                             |
| 43413100 | Loan Interviewers and Clerks                                             |
| Total    | 313                                                                      |

# Table Appendix 2: Low Skill Occupation

| Job Code | Job Title                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------|
| 43415100 | Order Clerks                                                                                        |
| 43416100 | Human Resources Assistants, Except Pavroll and Timekeeping                                          |
| 43417100 | Receptionists and Information Clerks                                                                |
| 43501100 | Cargo and Freight Agents                                                                            |
| 43502100 | Couries and Messengers                                                                              |
| 43503200 | Dispatchers, Except Police, Fire, and Ambulance                                                     |
| 43505100 | Postal Service Clerks                                                                               |
| 43506100 | Production, Planning, and Expediting Clerks                                                         |
| 43507100 | Shipping, Receiving, and Inventory Clerks                                                           |
| 43511100 | Weighers, Measurers, Checkers, and Samplers, Recordkeeping                                          |
| 43601100 | Executive Secretaries and Executive Administrative Assistants                                       |
| 43601200 | Legal Secretaries and Administrative Assistants                                                     |
| 43601400 | Secretaries and Administrative Assistants, Except Legal, Medical, and Executive                     |
| 43902100 | Data Entry Keyers                                                                                   |
| 43905100 | Mail Clerks and Mail Machine Operators, Except Postal Service                                       |
| 43906100 | Office Clerks, General                                                                              |
| 43907100 | Office Machine Operators, Except Computer                                                           |
| 45209300 | Farmworkers, Farm, Ranch, and Aquacultural Animals                                                  |
| 47204100 | Carpet Installers                                                                                   |
| 47205100 | Cement Masons and Concrete Finishers                                                                |
| 47206100 | Construction Laborers                                                                               |
| 47207300 | Operating Engineers and Other Construction Equipment Operators                                      |
| 47218100 | Roofers                                                                                             |
| 47301200 | Helpers–Carpenters                                                                                  |
| 47405100 | Highway Maintenance Workers                                                                         |
| 47406100 | Rail-Track Laying and Maintenance Equipment Operators                                               |
| 49202100 | Radio, Cellular, and Tower Equipment Installers and Repairers                                       |
| 49302100 | Automotive Body and Related Repairers                                                               |
| 49309100 | Bicycle Repairers                                                                                   |
| 49901100 | Mechanical Door Repairers                                                                           |
| 49904300 | Maintenance Workers, Machinery                                                                      |
| 49906100 | Camera and Photographic Equipment Repairers                                                         |
| 49909100 | Coin, Vending, and Amusement Machine Servicers and Repairers                                        |
| 49909000 | Riggers                                                                                             |
| 51202200 | Electrical and Electronic Equipment Assemblers                                                      |
| 51202300 | Lectromechanical Equipment Assemblers                                                               |
| 51209200 | Accemblers and Exhibitors All Other                                                                 |
| 51209900 | Assemblers and Fabricators, An Other<br>Balory                                                      |
| 51302100 | Dates and Most Cuttors                                                                              |
| 51302100 | Mast Poultry and Fish Cutters and Trimmers                                                          |
| 51402100 | State, Foundary, and Fish Cutters and Finnings.                                                     |
| 51403200 | Drilling and Bring Machine Tools, Operators, and Tenders, Metal and Plastic                         |
| 51403300 | Grinding Lapping Polishing and Buffing Machine Tool Setters Operators and Finders Metal and Plastic |
| 51403500 | Milling and Planing Machine Setters Operators and Tenders Metal and Plastic                         |
| 51406100 | Model Makers Metal and Plastic                                                                      |
| 51407200 | Molding Coremaking and Casting Machine Setters. Operators, and Tenders, Metal and Plastic           |
| 51408100 | Multiple Machine Tool Setters, Operators, and Tenders, Metal and Plastic                            |
| 51419100 | Heat Treating Equipment Setters, Operators, and Tenders, Metal and Plastic                          |
| 51419900 | Metal Workers and Plastic Workers, All Other                                                        |
| 51511100 | Prepress Technicians and Workers                                                                    |
| 51511300 | Print Binding and Finishing Workers                                                                 |
| 51603100 | Sewing Machine Operators                                                                            |
| 51606200 | Textile Cutting Machine Setters, Operators, and Tenders                                             |
| 51606400 | Textile Winding, Twisting, and Drawing Out Machine Setters, Operators, and Tenders                  |
| 51609100 | Extruding and Forming Machine Setters, Operators, and Tenders, Synthetic and Glass Fibers           |
| 51701100 | Cabinetmakers and Bench Carpenters                                                                  |
| 51702100 | Furniture Finishers                                                                                 |

# Low Skill Occupation (Continued)

| Low Skill Occupation | (Continued) |
|----------------------|-------------|
|----------------------|-------------|

| Job Code | Job Title                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------|
| 51704100 | Sawing Machine Setters, Operators, and Tenders                                                      |
| 51704200 | Woodworking Machine Setters, Operators, and Tenders, Except Sawing                                  |
| 51802100 | Stationary Engineers and Boiler Operators                                                           |
| 51901200 | Separating, Filtering, Clarifying, Precipitating, and Still Machine Setters, Operators, and Tenders |
| 51902100 | Crushing, Grinding, and Polishing Machine Setters, Operators, and Tenders                           |
| 51903200 | Cutting and Slicing Machine Setters, Operators, and Tenders                                         |
| 51904100 | Extruding, Forming, Pressing, and Compacting Machine Setters, Operators, and Tenders                |
| 51906100 | Inspectors, Testers, Sorters, Samplers, and Weighers                                                |
| 51908100 | Dental Laboratory Technicians                                                                       |
| 51911100 | Packaging and Filling Machine Operators and Tenders                                                 |
| 51912300 | Painting, Coating, and Decorating Workers                                                           |
| 51914100 | Semiconductor Processing Technicians                                                                |
| 51915100 | Photographic Process Workers and Processing Machine Operators                                       |
| 51919700 | Tire Builders                                                                                       |
| 51919900 | Production Workers, All Other                                                                       |
| 53303100 | Driver/Sales Workers                                                                                |
| 53401100 | Locomotive Engineers                                                                                |
| 53601100 | Bridge and Lock Tenders                                                                             |
| 53602100 | Parking Attendants                                                                                  |
| 53604100 | Traffic Technicians                                                                                 |
| 53605101 | Aviation Inspectors                                                                                 |
| 53605107 | Transportation Vehicle, Equipment and Systems Inspectors, Except Aviation                           |
| 53701100 | Conveyor Operators and Tenders                                                                      |
| 53702100 | Crane and Tower Operators                                                                           |
| 53705100 | Industrial Truck and Tractor Operators                                                              |
| 53706300 | Machine Feeders and Offbearers                                                                      |
| 53707200 | Pump Operators, Except Wellhead Pumpers                                                             |
| 53708100 | Refuse and Recyclable Material Collectors                                                           |
| Total    | 145                                                                                                 |

Notes: This table provides a list of low-skill occupations as identified by the U.S. Bureau of Labor Statistics. The BLS suggest that those jobs require low skilled laborers that are likely to be replaced by machines. There are 145 distinguish low skill occupations identified by the BLS.