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Natural perils like hurricane wind, hurricane storm, inland flood, earthquake, and wildfire 
can have significant adverse economic impacts on the geographical areas that they 
affect. The National Oceanic and Atmospheric Association (NOAA) National Centers for 
Environmental Information (NCEI) reported that, after adjusting for inflation, there were 
348 weather and climate disasters in the US that had overall damages in excess of $1 
billion from 1980 to 2022 – total costs for all of these events exceeded $2.5 trillion. 
Florida accounted for 75, or more than 20%, of these billion-dollar events. From 1980 to 
2022, the average annual number of U.S. weather/climate disasters was 8.1 events; the 
average was 18.0 events over the last five full calendar years (2018 to 2022). In 2022 
alone, the US experienced 18 weather and climate disasters with costs that exceeded 
$1 billion. According to the Florida Office of Insurance Regulation, Florida experienced 
$14.4 billion in insured losses from Hurricanes Ian (September 2022) and Nicole 
(November 2022) as of March 2023. The increasing prevalence and intensity of climate-
related disasters has garnered the attention of property owners, insurers, and 
governments. 
 
With recent earthquakes showing a trend of increasing economic losses, real estate 
investors should also be attuned to earthquake risks. The U.S. Geological Survey 
(USGS) and the Federal Emergency Management Association (FEMA) indicated that 
the U.S. experienced 28 earthquakes with a magnitude of 6 or greater in the last ten 
years. In their recently published joint study, USGS and FEMA estimated the annualized 
earthquake loss in the U.S. The study found that earthquakes cost the U.S. an 
estimated $14.7 billion annually in building damage and associated costs; this amount 
doubled the last estimate that was determined in 2017. Although earthquakes are a 
national problem, California has accounted for nearly two-thirds of the economic losses; 
Los Angeles has accounted for nearly a quarter of the total. 
 
This study explores the price effects of natural peril risks. Specifically, using property-
specific risk peril scores and transaction data from CoreLogic and Urban Institute 
census tract data, it examines the impact of natural hazard risks on apartment sales 
prices in the Miami and Los Angeles metropolitan areas from 2005 to 2022. Given 
investors’ increasing awareness of hazard risks, higher natural peril risks are expected 
to have placed downward pressure on property prices through time. 
 
Existing literature on whether property buyers and investors have accordingly priced 
natural perils into the prices they paid remains rather mixed. One important challenge in 
empirically capturing the capitalization of a peril is the ability to isolate such impact 
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among the many pricing factors. If there is material capitalization of hazard risks, one 
can expect such impact to show up more frequently on the valuations of properties with 
a large risk exposure and potential losses relative to those with a low or modest risk 
exposure. Built on this intuition, the analysis was designed to allow for potentially 
differential impacts on high-risk and low-risk exposure apartment properties. In addition, 
this research built upon existing studies which have pointed to a significant shift and 
development in the public sentiment towards climate risk. Empirically, this rising 
public/investor awareness of climate risk provides a natural experimental setting to 
evaluate potential impact of natural peril risks on property valuations.       
 
CoreLogic Risk Methodology 
 
CoreLogic is a leading industry provider of catastrophe models. The models are used 
widely by insurers, reinsurers, government agencies, banks, and other organizations. 
CoreLogic’s Risk Quantification & Engineering® (RQE) catastrophe risk modeling 
software platform allows users to quantify and manage the potential financial impact of 
natural hazards including hurricane wind, hurricane storm surge, inland flood, 
earthquake, and wildfire. For real estate, the platform is typically used to assess the risk 
of property damage related to a given peril. The model estimates the full probabilistic 
distribution of damage and loss under simulated scenarios of catastrophe frequency, 
severity, and location. RQE calculates average annual damage and loss estimates, as 
well as annual probability exceedances, e.g., 100-year losses, using a database of 
event simulation results to develop average annual loss rates for each property site. 
Scenario and average annual damage and losses can also be calculated for individual 
property sites, geographic aggregates, and portfolios of residential and commercial 
properties.   
 
Natural disasters have become costlier in recent years; much of this increase has been 
related to increases in exposure, labor and supply costs, and economic inflation. The 
effects of climate change related to cumulative carbon emissions has also become 
noticeable. Many scientists project that the North Atlantic Basin will have more category 
4 and 5 hurricanes because of climate change due to projections of future greenhouse 
gas emissions and energy consumption. The Intergovernmental Panel on Climate 
Change (IPCC) includes representative concentration pathway (RCP) scenarios that 
project future carbon emission scenarios. RCP8.5, known as the business-as-usual 
scenario, projects that carbon emissions will continue to increase exponentially through 
the remainder of the century without any reductions related to green technologies, 
emission reduction regulations, and/or fossil fuel resource depletion. A different climate 
scenario is represented by the RCP4.5, which projects that humanity will eventually 
begin to reduce carbon emissions in the middle of this century, and that these 
reductions will be related to any combination of implementing renewable energy 
sources and other green technologies, carbon emissions regulations, or other causes. 
CoreLogic’s RQE includes models that account for the effects of climate change using 
several climate change projections and time horizons. The RCP8.5 and RCP4.5 
projections account for changes in the frequency of events and sea level rise at 2050. In 
contrast to the RCP8.5 and RCP4.5, a baseline scenario of climate models accounts for 
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climatology for the last 120 years, i.e., 1900 to the present, without any adjustments to 
climate change. 
 
Insert 
Exhibit 1 
CoreLogic’s Hazard Map for Miami 
 
Exhibit 1 displays Miami’s hazard risk under the baseline, RCP4.5 – 2050, and RCP8.5 
– 2050 scenarios. Low, middle, and high levels of risk are indicated by green, yellow, 
and red shading, respectively. Moving across the scenarios (from baseline to RCP4.5 to 
RCP8.5), increasing risk is highlighted by the greater and darker red shading. Risk 
projections are expected to be higher in 2050 due to climate change, stemming from a 
combination of sea level rise and higher frequency of major hurricanes. Locales with the 
highest risk occur in areas near the coast and in the wetlands of the Everglades west of 
Miami. Non-coastal urban areas have the lowest risk due to longer distances from the 
storm surge waters and the reduction of hurricane winds due to friction from land. 
Miami’s risk is primarily driven by hurricanes; inland flood from non-tropical cyclones 
and wildfires are also contributors. Much of the area’s exposure is within 20 kilometers 
of the ocean and is subject to a high degree of risk.  
 
Insert 
Exhibit 2 
CoreLogic’s Hazard Map for Los Angeles 
 
Exhibit 2 presents Los Angeles’ hazard risk under the baseline, RCP4.5 – 2050, and 
RCP8.5 – 2050 scenarios. Low, middle, and high levels of risk are indicated by green, 
yellow, and red shading, respectively. Risk increases when moving down the scenarios 
(from baseline to RCP4.5 to RCP 8.5). Areas with the highest risk, or darkest red 
shading, generally occur inland; these areas also tend to have higher elevations. Many 
coastal areas have the lowest risk. Los Angeles’ risk is primarily driven by earthquakes, 
but inland floods and wildfires also contribute. Note that earthquake ground-shaking is 
not impacted by climate change, however, earthquake fire-following risk is projected to 
rise due to climate change which is expected to create more favorable conditions for 
fires. 
 
Apartment Transaction Activity 
 
The CoreLogic public record database was accessed to obtain multifamily transactions 
data for Miami and Los Angeles from January 2005 to December 2022. Only arms-
length property transactions were included in the analysis. The data was further filtered, 
excluding observations with missing property characteristics and outliers within each of 
the variables. Miami initially had 17,049 multifamily transactions over the 2005 to 2022 
time period. All transactions in Palm Beach County were excluded from the analysis as 
the county does not record an apartment’s total number of units in its public record data. 
The final Miami sample consisted of 7,792 transactions. Los Angeles initially had 60,415 
apartment transactions. Similar to Palm Beach County, all transactions in Orange 
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County were omitted from the analytics due to missing data. The final Los Angeles 
sample included 36,187 transactions; all were located in Los Angeles County.  
 
The hazard risks for Miami and Los Angeles are primarily driven by hurricanes and 
earthquakes, respectively. Using the binary variable HiRiskH and a threshold of 1% 
average annual damage ratios, the Miami apartment transaction data was split into two 
risk-based groups: areas subject to high average annual damage ratios from hurricane 
winds and storm surge (HiRiskH=1) and those that were not (HiRiskH=0). For Los 
Angeles, risk focused on the average annual damage ratios from earthquakes. Using a 
0.25% damage ratio threshold, the binary variable HiRiskEQ equaled one for the high-
risk group and zero otherwise.  
 
The construction of risk-based sampling was used in order to better isolate and capture 
the potential risk-specific pricing component. In addition, the analysis adopted a testable 
assumption that the 2013/2014 time period constituted a valid shift in the perception and 
awareness of climate risk (Keys and Mulder, 2020). As a result, the examined 
timeframe, 2005 to 2022, was split into two equal intervals: 2005 to 2013 and 2014 to 
2022. If property investors have become more aware of natural hazard risks in the post-
2014 time period, greater incremental price discounts would be anticipated in the post-
2014 period compared to the prior time frame. Exhibit 3 lists annual apartment 
transaction dollar volumes and property counts for Miami and Los Angeles by hazard 
risks from 2005 to 2022. 
 
Insert 
Exhibit 3 
Apartment Transaction Activity for Miami and Los Angeles by Hazard Risks 
 
Property counts highlight the historical ebb and flow of transaction activity across Miami 
and Los Angeles. It may bear a reminder that reported transactions do not capture all 
transactions that occurred during the time period but include only those that were used 
in the model estimations. Intuitively, property count tallies generally slowed during the 
Great Financial Crisis (roughly from 2007 to 2011) and the onset of the COVID-19 
pandemic (2020). For Miami, the high hurricane risk areas had an extended slowdown 
starting in 2017. The count drop-offs experienced in 2022 were likely due to the rising 
interest rate environment. Reflecting the significant run-up in property prices since the 
Great Financial Crisis, post-2014 transaction dollar volumes were significantly larger 
than their respective pre-2014 counterparts. A review of the table indicates healthy 
transaction activity across all risk categories in both Miami and Los Angeles. 
 
Repeat Sales Apartment Price Indices 
 
Utilizing a weighted least squares repeat sales methodology, CoreLogic transaction 
data was used to construct apartment price indices (APIs) for Miami and Los Angeles. 
In constructing the repeat sales-based price indices, only arms-length multifamily 
transactions that occurred between January 2000 and December 2022 were utilized; 
they were appended with their prior sales, if available. A minimum holding period of 12 
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months between the two sales dates was required to be considered a sales pair. In 
addition, sales pairs with an annual rate of price appreciation in the top or bottom one 
percentile were filtered out to exclude potential outliers. Partitions of the repeat sales 
sample for constructing risk-based price indices followed the same risk classifications 
used throughout the analyses. 
 
Exhibit 4 shows the Miami repeat sales four-quarter moving average smoothed APIs for 
high (HiRiskH=1) and non-high (HiRiskH=0) hurricane risk areas from 2005 to 2022. 
Exhibit 5 indicates average rolling four-quarter price changes from the Miami risk-based 
APIs in the pre-2014 (2005 to 2013) and post-2014 (2014 to 2022) time periods. 
 
Insert 
Exhibit 4 
Miami Repeat Sales Smoothed Apartment Price Indices by Hurricane Risk 
 
Insert 
Exhibit 5 
Average Rolling 4-Quarter Price Changes from Miami Smoothed APIs 
 
Exhibit 4 shows that the Miami smoothed APIs followed similar paths, but the 
HiRiskH=1 series exhibited a jaggedness, while the HiRiskH=0 series displayed a 
smoothness over the sample period. The greater volatility of the high hurricane risk 
category likely stems from the smaller number of paired sales in its repeat sales index. 
Exhibit 5 shows that average rolling four-quarter price changes for the Miami HiRiskH=1 
and HiRiskH=0 groupings in the pre-2014 timeframe were 0.09% and -0.33%, 
respectively. The high-risk category posted an average four-quarter price gain of 
11.31% in the post-2014 period; the non-high-risk average gain was 11.58%. The 
average rolling four-quarter price changes for the higher and lower hurricane risk groups 
were very similar in the pre- and post-2014 periods, and it showed no statistical 
differences. 
 
Insert 
Exhibit 6  
Los Angeles Repeat Sales Smoothed Apartment Price Indices by Earthquake Risk 
 
Insert 
Exhibit 7 
Average Rolling 4-Quarter Price Changes from the Los Angeles Smoothed APIs 
 
Exhibit 6 shows that the Los Angeles smoothed APIs fairly closely tracked one another 
through 2014, but afterwards an increasing divergence was evident. The California 
Earthquake Authority (CEA) reported an increase in earthquake insurance policy sales 
after the 5.1 La Habra earthquake near Los Angeles in March of 2014 (Ousley, 2014); a 
6.0 earthquake was also reported in Napa in northern California in 2014. These events 
suggest that earthquake risk awareness in Los Angeles may have become more 
prevalent after 2014 and it may have placed downward pressure on apartment prices 
from that time. Exhibit 7 indicates that the average rolling four-quarter price changes for 
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both groups were similar over 2005 to 2013 with the HiRiskEQ=1 gain (4.10%) slightly 
higher than that of the HiRiskEQ=0 group (3.83%). Post-2014, the high earthquake risk 
category posted an average four-quarter price gain of 7.82%; the non-high-risk average 
gain was 8.53%. Statistically, the two risk groups showed no significant difference in the 
rate of price appreciation. 
 
Data and Descriptive Statistics 
 
Data from CoreLogic, a leading global property information, analytics, and data-enabled 
solutions provider, were used to explore the impact of natural hazard risks on apartment 
prices in Miami and Los Angeles. In addition to a property’s zip code and census tract 
location, qualified opportunity zone (o-zone) tract information from Urban Institute, a 
non-profit economic and social policy research organization based in Washington, D.C., 
was utilized to map each property to designated o-zones. The overall data set included 
the following variables: 
 

PropSP  is the property sales price; 
PropNumUnit is the number of units in the apartment building; 
PropLand  is the property’s land area in acres; 
PropAge  is the apartment’s age in years; 
PropBltRatio is the ratio of the apartment’s number of units to its land 

area; 
OZone is a binary variable that equals one if the property is located 

in a qualified opportunity zone; 
HurricaneWind is the average annual damage ratio between the repair and 

total replacement cost of the building caused by hurricane 
winds; and 

EarthQuake is the average annual damage ratio between the repair and 
total replacement cost of the building caused by earthquake 
ground-shaking and fire-following. 

 
Qualified opportunity zones were established by the Tax Cuts and Jobs Act of 2017. 
They are a place-based community development program that encourages the 
investment of private capital investment into economically challenged urban and rural 
areas throughout the United States and its territories through the use of tax incentives. If 
certain conditions are met, investors can defer, reduce, and avoid capital gains taxes on 
the timely investment of their capital gains into qualified opportunity funds that invest in 
businesses and properties located in o-zones. The program’s constructs have created 
conditions that are ripe for rising real estate prices. The existing literature has found o-
zone price premiums for development and redevelopment properties (Sage, Langen, 
and van de Minne, 2019), apartments (Pierzak, 2021), and single-family homes (Mayer 
and Pierzak, 2021). 
 
Exhibit 8 lists apartment transaction variables for Miami and Los Angeles and provides 
descriptive statistics for their respective risk-based groups (HiRiskH and HiRiskEQ).  
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Insert 
Exhibit 8 
Descriptive Statistics 
 
Apartment transactions located in high hazard risk areas in Miami and Los Angeles 
accounted for approximately 27% and 17% of total transactions, respectively. 
Comparing the risk-based groups within each metropolitan area, some notable 
differences were evident in the property and location variables. While the overall 
average apartment sales prices were similar in Miami, the HiRiskH=1 multifamily 
properties tended to be smaller, older, more dense properties that were more expensive 
on a per unit basis than their lower risk counterparts; less than 2% of these apartments 
were located in o-zones. In Los Angeles, the overall average apartment sales prices 
were also similar, but the apartment properties located in high earthquake risk areas 
tended to be larger, newer, less dense properties that were less expensive on a per unit 
basis compared to the lower risk group; over 25% of these multifamily properties were 
located in o-zones. 
 
The HurricaneWind average annual damage ratios for Miami’s high hazard risk group 
exceeded one percent in some locations and this can be interpreted as the structures 
expecting total damage more than once per century. While the HurricaneWind averages 
differed considerably between Miami’s risk-based groups, Los Angeles’ EarthQuake 
averages offered less distinction. The EarthQuake average annual damage ratios for 
Los Angeles’ high and lower hazard risk groups were 0.27% and 0.20%, respectively. 
The modest spread raises a concern that the high hazard risk group may not be 
differentiated enough from its counterpart; this may have implications for the regression 
analysis. With the HiRiskEQ=1 group only accounting for 17% of Los Angeles’ 
apartment transactions, it would be difficult to refine the measure further.  
 
Empirical Methodology and Results 
 
Hedonic pricing methods were used to analyze the data. Using a difference-in-
differences (DiD) design, price dynamics in the Miami and Los Angeles apartment 
markets were examined. The empirical models (1) allow high and low risk exposure 
properties to appreciate at different rates due to their risk exposure to the natural peril, 
and (2) leverage DiD estimators to capture potential impact of a rising awareness of 
natural peril risk on apartment values or potential apartment sales price discounts 
associated with high natural peril risks. The dependent variable in the DiD estimation 
was the natural log of property sales price, lnPropSP. The independent variables 
included:   
 

lnPropSP    is the natural log of property sales price; 
lnPropNumUnit is the natural log of the number of units in the 

apartment building; 
lnPropLand   is the natural log of the property’s land area in  

  acres; 
lnPropAge   is the natural log of the apartment’s age in  



8 
 

  years; 
PropBltRatio is the ratio of the apartment’s number of units 

to its land area; 
OZone is a binary variable that equals one if the 

property is located in a qualified opportunity 
zone; 

HurricaneWind is the average annual damage ratio between 
the repair and total replacement cost of the 
building caused by hurricane winds; 

HighRiskH is a binary variable that equals one for areas 
subject to high average annual damage ratios 
from hurricane winds and storm surge;  

EarthQuake is the average annual damage ratio between 
the repair and total replacement cost of the 
building caused by earthquake ground-shaking 
and fire-following; 

HighRiskEQ is a binary variable that equals one for areas 
subject to high average annual damage ratios 
from earthquakes; 

D20## is a set of binary time variables that equal one 
if the apartment sold in a particular year with 
years ranging from 2005 to 2022; 

HighRiskHxD20## is an interaction variable that multiplies 
HighRiskH and D20##; 

HighRiskEQxD20## is an interaction variable that multiplies 
HighRiskEQ and D20##; 

DPeriod####-#### is a set of binary time variables that equal one 
if the apartment sold in a particular time period 
with periods ranging from 2005 to 2007, 2008 
to 2012, 2013 to 2015, 2016 to 2019, and 2020 
to 2022, respectively; 

HighRiskHxDPeriod####-#### is an interaction variable that multiplies 
HighRiskH and DPeriod####-####; and 

HighRiskEQxDPeriod####-#### is an interaction variable that multiplies 
HighRiskEQ and DPeriod####-####. 

 
The baseline scenario from CoreLogic’s RQE was utilized in all DiD estimations. An 
effort was made to incorporate the RCP4.5 and RCP8.5 projections into the models on 
a priori assumption that projected climate change may separately impact property 
valuation. However, a nearly perfect correlation was found between these projections 
and the baseline based on either the correlation in damage ratios or the rank 
correlation. The RCP4.5 and RCP8.5 projections, as well as their projected differences 
from the baseline scenario, were not included in the models. Exhibit 9 displays the DiD 
estimation results for the first of two Miami models; Model 1 employed calendar years 
for the binary time variables. 
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Insert 
Exhibit 9 
Miami: Model 1 Difference-in-Difference Estimations 
 
In the first Miami model, DiD coefficients were estimated using 18 individual year 
dummy variables. These calendar year variables allowed for a more continuous 
measure and tracing of the dynamics of DiD coefficients before and after a shift in the 
heightened awareness of climate risk and its resulting impact. A potential drawback of 
using 18 individual calendar year dummies is on the accuracy and reliability of 
estimated DiD coefficients when individual-year observations on HighRiskH=1 become 
quite thin.   
 
Treating 2014 (the assumed year when heightened awareness of climate risk 
commenced) as the base year, HiRiskHxD2014 was omitted from the equation, thus, 
providing a point of comparison. All the interaction variable coefficients were negative; 
12 of 17 coefficients were significantly different from zero at the 90%, 95%, or 99% 
levels of confidence. These results indicate that Miami’s apartment investors have had a 
longstanding awareness of hurricane risk and priced this natural peril risk into their 
multifamily acquisitions. Percentage differences calculated from the coefficients capture 
the incremental apartment price changes for Miami properties located in high hurricane 
risk areas. 
 
The R2, or explanatory power, of the regression was 54.4%. All the coefficients for the 
non-time independent variables with the exception of lnPropLand were significantly 
different from zero at the 99% level of confidence. Of these property-specific variables, 
lnPropNumUnit was the explanatory variable with the largest impact on sales price. Its 
coefficient is the price elasticity with respect to an apartment’s number of units. For a 
10% increase in an apartment’s number of units, sales price is expected to increase by 
8.9%. The coefficient for lnPropAge is also a price elasticity. Holding all else equal, 
sales price is expected to decrease by 1.7% with a 10% increase in a property’s age. 
OZone exhibited a negative relationship with lnPropSP; an intuitive outcome given that 
economically challenged and capital starved areas tend to be associated with lower 
property prices.  
 
Interestingly, HurricaneWind and HiRiskH displayed positive relationships, likely 
attributable to the greater desirability of their locations. Together they suggest a 
nonlinear relationship between prices and risk exposure. The time dummy variables, 
D2005 to D2022, appear to have adequately captured the historical apartment price 
trends; D2014 was omitted for comparison purposes. 
 
Exhibit 10 displays the DiD estimation results for the second Miami model. Recognizing 
that the numbers of observations in some years are quite thin which affects the 
accuracy and reliability of the estimated DiD coefficients, Model 2 utilized time periods 
that included a range of years rather than individual calendar years for the binary time 
variables. 
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Insert 
Exhibit 10 
Miami: Model 2 Difference-in-Difference Estimations 
 
The results for the second Miami model were very similar to those of the first model. All 
the coefficients for the non-time independent variables had the same signs and levels of 
statistical significance; they also had similar magnitudes. The time period binary 
variables also appear to have captured Miami’s historical apartment price dynamics. For 
the interaction variables, again, all the coefficients were negative. The coefficients for 
HiRiskHxDPeriod2008-2012 and HiRiskHxDPeriod2020-2022 were significantly 
different from zero at the 99% level of confidence; the coefficient for 
HiRiskHxDPeriod2005-2007 was significantly different from zero at the 90% level of 
confidence. Holding all else equal, sales price is expected to be 21.0% lower for an 
apartment in a high hurricane risk area sold in the 2008 to 2012 time period compared 
to the 2013 to 2015 time period; the relative discount was 19.5% in the 2020 to 2022 
time period. These results provide evidence of a consistent discount for apartments in 
high hurricane risk zones relative to their lower risk counterparts. A test of statistical 
difference between pre-2014 and post-2014 DiD coefficients indicated that the relative 
price discount has not changed in the post-2014 time period. 
 
Exhibit 11 displays the DiD estimation results for the first of two Los Angeles models; 
Model 1 employed calendar years for the binary time variables. 
 
Insert 
Exhibit 11 
Los Angeles: Model 1 Difference-in-Difference Estimations 
 
In many ways, the results for the first Miami and Los Angeles models were similar. For 
the Los Angeles model, the R2 was 54.8%. All the coefficients for the non-time 
independent variables with the exception of lnPropLand were significantly different from 
zero at the 99% level of confidence. Of these property-specific variables, 
lnPropNumUnit was the explanatory variable with the largest impact on sales price. For 
a 10% increase in an apartment’s number of units, sales price is expected to increase 
by 8.3%. Holding all else equal, sales price is expected to decrease by 2.8% with a 10% 
increase in a property’s age. OZone exhibited a negative relationship with lnPropSP. 
The time dummy variables also appear to have adequately captured the historical 
apartment price trends.  
 
In contrast to the first Miami model, the estimated coefficients on the Los Angeles 
hazard risk variables (EarthQuake and HiRiskEQ) are negative, suggesting a locational 
disamenity, as well as a nonlinear relationship between prices and risk exposure. 
 
The high earthquake risk*time interaction variables were the main interests of this 
model. HiRiskEQxD2014 was omitted from the equation and acted as a reference point. 
There was no consistency in the sign of the interaction variable coefficients; only 6 of 17 
coefficients were significantly different from zero at the 95% or 99% levels of 
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confidence. Of the statistically significant coefficients, half of them were negative and 
half were positive. These outcomes may stem from data and/or categorization issues. 
Recall, Los Angeles’ risk-based groups may not have been meaningfully differentiated 
and that it may not be possible to do so. Alternatively, investors may not be making a 
differentiation between the high and lower risk groups in Los Angeles. They may have 
recognized and accepted the risk, knowing that it can be mitigated through earthquake 
insurance.   
 
Exhibit 12 displays the DiD estimation results for the second Los Angeles model. Model 
2 utilized time periods instead of calendar years for the dummy time variables. 
 
Insert 
Exhibit 12 
Miami: Model 2 Difference-in-Difference Estimations 
 
The results for the second Los Angeles model were similar to those of the first model. 
Again, there was no consistency in the sign of the coefficients for the interaction 
variables. The coefficients for HiRiskEQxDPeriod2005-2007 and 
HiRiskEQxDPeriod2020-2022 were both positive and significantly different from zero at 
the 90 and 99% levels of confidence, respectively. Holding all else equal, sales price is 
expected to be 8.8% higher for an apartment that sold in a high earthquake risk area in 
the 2020 to 2022 time period compared to the 2013 to 2015 time period. This 
unanticipated price premium may simply reflect the surge in apartment prices located in 
high earthquake risk zones during the COVID-19 pandemic.   
 
Robustness Checks 
 
In an effort to check the robustness of the Miami: Model 2 and Los Angeles: Model 2 
empirical results, the data for each market was partitioned using the property number of 
units (PropNumUnit) variables. The analyses assumed a clientele effect where more 
sophisticated investors purchase larger properties. These same investors are believed 
to have a heightened awareness, recognition, and differentiation of hazard risks. These 
understandings are then assumed to be incorporated into their underwriting processes. 
These investors also insure these properties, and differences in insurance premiums 
are expected to play a role in their buying decisions. With this in mind, larger multifamily 
properties located in high natural peril risk areas are expected to have larger price 
discounts relative to their smaller apartment counterparts. In each cohort, high hazard 
risk apartments sold in the post-2014 period are also anticipated to have larger price 
discounts than their pre-2014 peers given that property investors are assumed to be 
more aware of natural hazard risks in the post-2014 time period. Unit size thresholds of 
15 and 30 units were established for Miami and Los Angeles, respectively; these 
determinations were influenced by each metropolitan area’s median value for 
PropNumUnit.  
 
Exhibit 13 displays the Miami: Model 2 DiD estimations for the apartment size-based 
sub-samples. 
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Insert 
Exhibit 13 
Miami: Model 2 Difference-in-Difference Estimations Partitioned by Units 
 
For the larger unit number (PropNumUnit>15) sub-sample, all the interaction variable 
coefficients were negative; two of four coefficients were significantly different from zero 
at the 90% or 95% levels of confidence. The interaction variable coefficients for the 
PropNumUnit≤15 sub-sample all were negative and three of four coefficients were 
significantly different from zero at the 90% or 99% levels of confidence. The estimation 
results from the two sub-sample models did not support our expectation that large 
investors may have better awareness of potential risk exposure and were more 
sophisticated in pricing the risk. Larger and smaller apartments located in high hurricane 
risk areas had similar price discounts. Within each grouping, apartment price discounts 
in the pre- and post-2014 periods also had similar magnitudes. Overall, the results 
suggest that Miami apartment investors have long been attuned to high hurricane risk 
and priced apartments exposed to high risks accordingly.    
 
Exhibit 14 displays the Los Angeles: Model 2 DiD estimations for the apartment size-
based sub-samples. 
 
Insert 
Exhibit 14 
Los Angeles: Model 2 Difference-in-Difference Estimations Partitioned by Units 
 
Focusing on the interaction variables, both sub-sample models lacked a consistency in 
the signs of their coefficients; few were significantly different from zero at the 90%, 95%, 
or 99% levels of confidence. The results failed to support the assertion that larger 
multifamily properties in high earthquake risk areas have larger price discounts relative 
to their smaller peers. There was also no evidence that apartments located in high 
earthquake risk areas sold in the post-2014 period have larger price discounts than their 
pre-2014 counterparts. Overall, the Los Angeles analyses lacked any meaningful 
results. 
 
There may be several explanations for the lack of meaningful results from the Los 
Angeles models. First, as previously mentioned, the models may suffer from an 
identification issue related to the established threshold for high earthquake risk. Next, 
apartment investors may not meaningfully differentiate the risk between the unit-based 
groups, perceiving earthquake risk similarly across all of Los Angeles. Then, given that 
major earthquake events are infrequent, investors may simply be less concerned about 
the risk and its implications. Finally, investor worries may be mitigated due to availability 
of earthquake insurance. Many lenders require earthquake insurance for properties 
deemed to be in high, and even not so high, risk areas.    
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Conclusions 
 
In conclusion, natural perils have had adverse economic impacts in Miami and Los 
Angeles. In Miami, hurricane wind and storm surge dominate risks, but inland flood from 
non-tropical cyclones and wildfire are additional risks. The high hazard areas subject to 
the highest hurricane winds and storm surge occur within 20 kilometers of the coastline. 
Climate change is expected to make these coastal locations more prone to higher winds 
and storm surge due to higher frequency of major hurricanes and higher sea level. 
Despite these elevated risks, there is currently no exodus from the shoreline due to its 
desirable location, but investors have been taking greater interest in inland areas due to 
its relatively lower hazard risk. In Los Angeles, earthquake dominates the risk from 
natural perils, but the metropolitan area is also subject to wildfire and inland flood risk. 
All areas of the Los Angeles metropolitan area are subject to earthquake risk, but the 
risk is highest inland near fault lines and on softer soils. While earthquake ground-
shaking is not impacted by climate change, earthquake fire-following risk is impacted by 
climate change as it is expected to create more favorable conditions for fires. 
 
This study explores the price effects of natural peril risks. Specifically, it examines the 
impact of natural hazard risks on apartment sales prices in the Miami and Los Angeles 
metropolitan areas from 2005 to 2022. Given investors’ increasing awareness of hazard 
risks, higher natural peril risks are expected to have placed downward pressure on 
multifamily property prices through time. High hazard risk apartments sold in the post-
2014 period are also anticipated to have larger price discounts than their pre-2014 
peers. Lastly, assuming a clientele effect where more sophisticated investors purchase 
larger properties, larger apartments located in high natural peril risk areas are expected 
to have greater price discounts relative to their smaller multifamily counterparts. 
 
The Miami and Los Angeles results were in stark contrast to one another. For Miami, 
the hurricane risk variables displayed positive and nonlinear relationships with sales 
price; this was likely attributable to the greater desirability of their locations. The 
empirical results provided evidence of a consistent discount for apartments in high 
hurricane risk zones relative to their lower risk counterparts with apartment price 
discounts in the pre- and post-2014 periods having similar magnitudes. Larger and 
smaller apartments located in high hurricane risk areas also had similar price discounts. 
Overall, the results suggest that Miami apartment investors have long been attuned to 
high hurricane risk and have priced apartments exposed to high risks accordingly.    
 
For Los Angeles, the estimated coefficients for the earthquake risk variables were 
negative, suggesting a locational disamenity. Overall, the empirical results failed to 
support any of the three expected assertions. The lack of meaningful results from the 
Los Angeles models may stem from a variety of reasons. First, the models may suffer 
from an identification issue related to the established threshold for high earthquake risk. 
Next, apartment investors may perceive earthquake risk similarly across all of Los 
Angeles. Then, given the infrequency of major earthquake events, investors may simply 
be less concerned about the risk and its implications. Finally, investor worries may be 
mitigated due to the availability of earthquake insurance. 
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Exhibits 
 
Exhibit 1 
CoreLogic’s Hazard Map for Miami 
 

Baseline

 

RCP4.5 – 2050 Scenario 

 

RCP8.5 – 2050 Scenario

  
Sources: CoreLogic’s RQE. 
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Exhibit 2 
CoreLogic’s Hazard Map for Los Angeles 
 
Baseline 

 
 
RCP4.5 – 2050 Scenario 

 
 
RCP8.5 – 2050 Scenario 

 
Sources: CoreLogic’s RQE. 
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Exhibit 3 
Apartment Transaction Activity for Miami and Los Angeles by Hazard Risks 

 Miami Los Angeles 
 HighRiskH = 1 HighRiskH = 0 HighRiskEQ = 1 HighRiskEQ = 0 
 

Year 
Total Volume ($) 

(n) 
Total Volume ($) 

(n) 
Total Volume ($) 

(n) 
Total Volume ($) 

(n) 
2005 301,457,157 

(157) 
784,952,410 

(494) 
1,433,246,845 

(555) 
9,411,062,076 

(2,669) 
2006 221,312,400 

(110) 
969,511,900 

(366) 
1,112,883,091 

(432) 
4,026,607,745 

(1,783) 
2007 90,324,900 

(49) 
450,937,700 

(219) 
1,264,953,014 

(365) 
5,573,404,830 

(1,729) 
2008 63,842,800 

(51) 
415,774,521 

(175) 
535,569,876 

(237) 
2,623,228,140 

(1,126) 
2009 80,435,365 

(45) 
382,135,367 

(126) 
335,382,185 

(226) 
1,625,146,416 

(924) 
2010 216,323,575 

(96) 
208,496,450 

(126) 
437,797,506 

(228) 
2,435,953,229 

(1,071) 
2011 170,317,679 

(120) 
455,795,679 

(236) 
637,944,193 

(271) 
3,497,320,124 

(1,314) 
2012 335,265,500 

(149) 
618,919,107 

(365) 
1,302,072,268 

(389) 
5,825,980,716 

(1,789) 
2013 337,392,300 

(161) 
571,840,743 

(351) 
1,139,762,401 

(385) 
5,335,633,297 

(1,957) 
2014 414,590,750 

(183) 
521,897,450 

(377) 
964,961,093 

(366) 
5,597,116,903 

(1,937) 
2015 434,529,200 

(142) 
1,276,817,280 

(393) 
1,243,012,147 

(351) 
8,521,523,253 

(2,010) 
2016 326,423,000 

(114) 
977,337,825 

(349) 
1,795,801,018 

(397) 
6,318,081,588 

(1,921) 
2017 242,445,150 

(94) 
1,267,097,600 

(361) 
1,686,679,281 

(335) 
9,657,628,594 

(1,932) 
2018 250,845,650 

(83) 
881,663,481 

(305) 
1,430,121,727 

(313) 
8,593,647,412 

(1,792) 
2019 315,320,700 

(93) 
977,794,936 

(330) 
1,360,601,918 

(285) 
8,668,415,091 

(1,661) 
2020 147,329,366 

(78) 
955,798,919 

(286) 
1,736,406,168 

(238) 
5,660,341,043 

(1,238) 
2021 840,301,050 

(207) 
2,378,616,867 

(462) 
1,519,076,519 

(347) 
7,703,035,670 

(1,881) 
2022 796,836,300 

(178) 
1,248,411,500 

(361) 
908,244,500 

(208) 
8,098,149,534 

(1,525) 
     

2005-2013 1,816,671,676 
(938) 

4,858,363,876 
(2,458) 

8,199,611,378 
(3,088) 

40,354,336,574 
(14,362) 

2014-2022 3,768,621,166 
(1,172) 

10,485,435,858 
(3,224) 

12,644,904,371 
(2,840) 

68,817,939,088 
(15,897) 

     
2005-2022 5,585,292,842 

(2,110) 
15,343,799,734 

(5,682) 
20,844,515,749 

(5,928) 
109,172,275,662 

(30,259) 
Sources: CoreLogic Public Record; Authors’ calculations. 
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Exhibit 4 
Miami Repeat Sales Smoothed Apartment Price Indices by Hurricane Risk 

 
Sources: Authors’ estimations using CoreLogic public record data. 
 
Exhibit 5 
Average Rolling 4-Quarter Price Changes from Miami Smoothed APIs 

 
Sources: Authors’ estimations using CoreLogic public record data. 
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Exhibit 6 
Los Angeles Repeat Sales Smoothed Apartment Price Indices by Earthquake Risk 

 
Sources: Authors’ estimations using CoreLogic public record data. 
 
Exhibit 7 
Average Rolling 4-Quarter Price Changes from Los Angeles Smoothed APIs 

 
Sources: Authors’ estimations using CoreLogic public record data. 
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Exhibit 8 
Descriptive Statistics 

 Miami Los Angeles 
 
 

HiRiskH = 1 
(n = 2,110) 

HiRiskH = 0 
(n = 5,682) 

HiRiskEQ = 1 
(n = 5,928) 

HiRiskEQ = 0 
(n = 30,259) 

 
Variable 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

PropSP 
($M) 

2,647,058 
(4,163,398) 

2,700,422 
(5,757,604) 

3,516,281 
(6,958,414) 

3,607,927 
(8,023,030) 

PropNumUnit 
(Units) 

14 
(24) 

22 
(44) 

19 
(27) 

15 
(24) 

PropSP/Unit 
($/Unit) 

223,055 
(320,854) 

155,234 
(358,240) 

204,944 
(220,315) 

263,841 
(561,641) 

PropLand 
(Acres) 

0.2664 
(0.3675) 

0.6590 
(1.6938) 

0.4488 
(0.8154) 

0.3436 
(0.6580) 

PropAge 
(Years) 

64.5336 
(15.1607) 

52.0593 
(18.2889) 

49.9084 
(19.5603) 

58.9544 
(21.7290) 

PropBltRatio 
 

55.3077 
(27.9687) 

42.3012 
(23.0969) 

44.6776 
(17.0607) 

48.6708 
(24.3481) 

Ozone 
 

0.0142 
(0.1184) 

0.1989 
(0.3992) 

0.2765 
(0.4473) 

0.1508 
(0.3578) 

HurricaneWind 
 

1.2939 
(0.2556) 

0.7140 
(0.1410) 

-- 
-- 

-- 
-- 

EarthQuake 
 

-- 
-- 

-- 
-- 

0.2657 
(0.0336) 

0.2046 
(0.0312) 

-- indicates not applicable  
Sources: CoreLogic; Urban Institute; Authors’ calculations. 
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Exhibit 9 
Miami: Model 1 Difference-in-Difference Estimations 

Miami: Model 1 
Dependent Variable: lnPropSP 

R2 = 0.544 
n = 7,792 

Independent Variable Coefficient Standard Error 
Constant 12.2012 0.1648 *** 
lnPropNumUnit 0.8940 0.0500 *** 
lnPropLand -0.0679 0.0487  
lnPropAge -0.1793 0.0203 *** 
PropBltRatio -0.0062 0.0010 *** 
Ozone -0.3142 0.0227 *** 
HurricaneWind 0.3916 0.0468 *** 
HiRiskH 0.3970 0.0676 *** 
D2005 0.0228 0.0472  
D2006 0.1742 0.0506 *** 
D2007 0.0499 0.0586  
D2008 0.0891 0.0631  
D2009 0.0425 0.0710  
D2010 -0.3875 0.0709 *** 
D2011 -0.2275 0.0572 *** 
D2012 -0.0988 0.0506 * 
D2013 -0.0440 0.0511  
D2015 0.2775 0.0496 *** 
D2016 0.3215 0.0512 *** 
D2017 0.3532 0.0507 *** 
D2018 0.4654 0.0530 *** 
D2019 0.6156 0.0519 *** 
D2020 0.6609 0.0540 *** 
D2021 0.8787 0.0478 *** 
D2022 0.9770 0.0507 *** 
HiRiskHxD2005 -0.1338 0.0885  
HiRiskHxD2006 -0.2599 0.0972 *** 
HiRiskHxD2007 -0.2700 0.1252 ** 
HiRiskHxD2008 -0.5238 0.1259 *** 
HiRiskHxD2009 -0.7162 0.1347 *** 
HiRiskHxD2010 -0.2028 0.1120 * 
HiRiskHxD2011 -0.1848 0.0991 * 
HiRiskHxD2012 -0.2120 0.0913 ** 
HiRiskHxD2013 -0.1205 0.0902  
HiRiskHxD2015 -0.1290 0.0916  
HiRiskHxD2016 -0.0815 0.0968  
HiRiskHxD2017 -0.0380 0.1010  
HiRiskHxD2018 -0.1810 0.1054 * 
HiRiskHxD2019 -0.2498 0.1019 ** 
HiRiskHxD2020 -0.4805 0.1077 *** 
HiRiskHxD2021 -0.2859 0.0846 *** 
HiRiskHxD2022 -0.3330 0.0884 *** 
Notes: With county and zip code fixed effects. *Significantly different from zero at the 90% level of confidence. 
**Significantly different from zero at the 95% level of confidence. ***Significantly different from zero at the 99% 
level of confidence. 

Sources: CoreLogic; Urban Institute; Authors’ calculations. 
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Exhibit 10 
Miami: Model 2 Difference-in-Difference Estimations 

Miami: Model 2 
Dependent Variable: lnPropSP 

R2 = 0.530 
n = 7,792 

Independent Variable Coefficient Standard Error 
Constant 12.2789 0.1643 *** 
lnPropNumUnit 0.8872 0.0505 *** 
lnPropLand -0.0602 0.0493  
lnPropAge -0.1731 0.0205 *** 
PropBltRatio -0.0060 0.0010 *** 
Ozone -0.3183 0.0229 *** 
HurricaneWind 0.3943 0.0471 *** 
HiRiskH 0.2989 0.0461 *** 
DPeriod2005-2007 -0.0030 0.0300  
DPeriod2008-2012 -0.1972 0.0303 *** 
DPeriod2016-2019 0.3511 0.0283 *** 
DPeriod2020-2022 0.7707 0.0296 *** 
HiRiskHxDPeriod2005-2007 -0.1043 0.0586 * 
HiRiskHxDPeriod2008-2012 -0.2357 0.0545 *** 
HiRiskHxDPeriod2016-2019 -0.0419 0.0554  
HiRiskHxDPeriod2020-2022 -0.2169 0.0541 *** 
Notes: With county and zip code fixed effects. *Significantly different from zero at the 90% level of confidence. 
**Significantly different from zero at the 95% level of confidence. ***Significantly different from zero at the 99% 
level of confidence. 

Sources: CoreLogic; Urban Institute; Authors’ calculations. 
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Exhibit 11 
Los Angeles: Model 1 Difference-in-Difference Estimations 

Los Angeles: Model 1 
Dependent Variable: lnPropSP 

R2 = 0.548 
n = 36,187 

Independent Variable Coefficient Standard Error 
Constant 13.8832 0.0832 *** 
lnPropNumUnit 0.8327 0.0237 *** 
lnPropLand 0.0099 0.0228  
lnPropAge -0.2991 0.0073 *** 
PropBltRatio -0.0027 0.0004 *** 
Ozone -0.1812 0.0090 *** 
EarthQuake -0.6184 0.1062 *** 
HiRiskEQ -0.0784 0.0365 ** 
D2005 -0.1780 0.0188 *** 
D2006 -0.2313 0.0207 *** 
D2007 -0.1760 0.0209 *** 
D2008 -0.1998 0.0236 *** 
D2009 -0.4554 0.0252 *** 
D2010 -0.3049 0.0240 *** 
D2011 -0.2728 0.0225 *** 
D2012 -0.1653 0.0207 *** 
D2013 -0.1036 0.0202 *** 
D2015 0.2359 0.0201 *** 
D2016 0.2389 0.0203 *** 
D2017 0.4152 0.0203 *** 
D2018 0.4763 0.0206 *** 
D2019 0.5452 0.0211 *** 
D2020 0.5356 0.0229 *** 
D2021 0.5559 0.0204 *** 
D2022 0.7044 0.0216 *** 
HiRiskEQxD2005 -0.0611 0.0464  
HiRiskEQxD2006 0.1072 0.0493 ** 
HiRiskEQxD2007 0.0557 0.0510  
HiRiskEQxD2008 -0.0350 0.0576  
HiRiskEQxD2009 -0.3005 0.0589 *** 
HiRiskEQxD2010 0.0329 0.0583  
HiRiskEQxD2011 -0.0760 0.0553  
HiRiskEQxD2012 0.0335 0.0503  
HiRiskEQxD2013 0.0729 0.0502  
HiRiskEQxD2015 -0.1385 0.0511 *** 
HiRiskEQxD2016 -0.0240 0.0499  
HiRiskEQxD2017 -0.0176 0.0517  
HiRiskEQxD2018 -0.0664 0.0527  
HiRiskEQxD2019 -0.1238 0.0540 ** 
HiRiskEQxD2020 0.1282 0.0572 ** 
HiRiskEQxD2021 0.1109 0.0514 ** 
HiRiskEQxD2022 -0.0693 0.0588  
Notes: With county and zip code fixed effects. *Significantly different from zero at the 90% level of confidence. 
**Significantly different from zero at the 95% level of confidence. ***Significantly different from zero at the 99% 
level of confidence. 

Sources: CoreLogic; Urban Institute; Authors’ calculations. 
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Exhibit 12 
Miami: Model 2 Difference-in-Difference Estimations 

Los Angeles: Model 2 
Dependent Variable: lnPropSP 

R2 = 0.536 
n = 36,187 

Independent Variable Coefficient Standard Error 
Constant 13.9019 0.0833 *** 
lnPropNumUnit 0.8351 0.0240 *** 
lnPropLand 0.0093 0.0231  
lnPropAge -0.2932 0.0074 *** 
PropBltRatio -0.0027 0.0004 *** 
Ozone -0.1810 0.0091 *** 
EarthQuake -0.6232 0.1075 *** 
HiRiskEQ -0.1032 0.0220 *** 
DPeriod2005-2007 -0.2379 0.0117 *** 
DPeriod2008-2012 -0.3067 0.0116 *** 
DPeriod2016-2019 0.3669 0.0112 *** 
DPeriod2020-2022 0.5526 0.0125 *** 
HiRiskEQxDPeriod2005-2007 0.0483 0.0284 * 
HiRiskEQxDPeriod2008-2012 -0.0345 0.0284  
HiRiskEQxDPeriod2016-2019 -0.0366 0.0283  
HiRiskEQxDPeriod2020-2022 0.0841 0.0322 *** 
Notes: With county and zip code fixed effects. *Significantly different from zero at the 90% level of confidence. 
**Significantly different from zero at the 95% level of confidence. ***Significantly different from zero at the 99% 
level of confidence. 

Sources: CoreLogic; Urban Institute; Authors’ calculations. 
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Exhibit 13 
Miami: Model 2 Difference-in-Difference Estimations Partitioned by Units 

Miami: Model 2 
 PropNumUnit ≤ 15 

Dependent Variable: lnPropSP 
R2 = 0.354 
n = 5,613 

PropNumUnit > 15 
Dependent Variable: lnPropSP 

R2 = 0.431 
n = 2,179 

Independent Variable Coefficient Standard Error Coefficient Standard Error 
Constant 12.6212 0.2075 *** 14.5219 0.3946 *** 
lnPropNumUnit 0.7121 0.0694 *** 0.3416 0.1170 *** 
lnPropLand 0.1617 0.0685 ** 0.2531 0.1074 ** 
lnPropAge -0.1739 0.0231 *** -0.2027 0.0410 *** 
PropBltRatio -0.0006 0.0016  -0.0026 0.0018  
Ozone -0.2428 0.0246 *** -0.4975 0.0506 *** 
HurricaneWind 0.4874 0.0508 *** 0.2089 0.1043 ** 
HiRiskH 0.2708 0.0484 *** 0.3602 0.1074 *** 
DPeriod2005-2007 0.0735 0.0327 ** -0.1271 0.0636 ** 
DPeriod2008-2012 -0.1319 0.0337 *** -0.3176 0.0620 *** 
DPeriod2016-2019 0.3586 0.0301 *** 0.3872 0.0634 *** 
DPeriod2020-2022 0.7992 0.0314 *** 0.7348 0.0671 *** 
HiRiskH X DPeriod2005-2007 -0.1166 0.0620 * -0.1504 0.1341  
HiRiskH X DPeriod2008-2012 -0.2580 0.0582 *** -0.2348 0.1230 * 
HiRiskH X DPeriod2016-2019 -0.0161 0.0578  -0.1466 0.1321  
HiRiskH X DPeriod2020-2022 -0.2226 0.0570 *** -0.2567 0.1244 ** 
Notes: With county and zip code fixed effects. *Significantly different from zero at the 90% level of confidence. **Significantly 
different from zero at the 95% level of confidence. ***Significantly different from zero at the 99% level of confidence. 

Sources: CoreLogic; Urban Institute; Authors’ calculations. 
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Exhibit 14 
Los Angeles: Model 2 Difference-in-Difference Estimations Partitioned by Units 

Los Angeles: Model 2 
 PropNumUnit ≤ 30 

Dependent Variable: lnPropSP 
R2 = 0.396 
n = 32,674 

PropNumUnit > 30 
Dependent Variable: lnPropSP 

R2 = 0.445 
n = 3,509 

Independent Variable Coefficient Standard Error Coefficient Standard Error 
Constant 13.6994 0.0894 *** 15.0024 0.3352 *** 
lnPropNumUnit 0.8630 0.0262 *** 0.5807 0.0938 *** 
lnPropLand -0.0362 0.0251  0.3065 0.0838 *** 
lnPropAge -0.2771 0.0079 *** -0.3611 0.0224 *** 
PropBltRatio -0.0031 0.0005 *** 0.0010 0.0013  
Ozone -0.1841 0.0092 *** -0.1598 0.0387 *** 
EarthQuake -0.5012 0.1112 *** -1.0140 0.3807 *** 
HiRiskEQ -0.0912 0.0227 *** -0.1707 0.0805 ** 
DPeriod2005-2007 -0.2340 0.0117 *** -0.2670 0.0508 *** 
DPeriod2008-2012 -0.2983 0.0117 *** -0.3734 0.0497 *** 
DPeriod2016-2019 0.3579 0.0112 *** 0.4542 0.0505 *** 
DPeriod2020-2022 0.5388 0.0126 *** 0.7093 0.0578 *** 
HiRiskEQ X DPeriod2005-2007 0.0297 0.0294  0.1818 0.0999 * 
HiRiskEQ X DPeriod2008-2012 -0.0160 0.0294  -0.0927 0.0999  
HiRiskEQ X DPeriod2016-2019 -0.0569 0.0292 * 0.0356 0.1018  
HiRiskEQ X DPeriod2020-2022 0.0695 0.0330 ** 0.1159 0.1237  
Notes: With county and zip code fixed effects. *Significantly different from zero at the 90% level of confidence. **Significantly 
different from zero at the 95% level of confidence. ***Significantly different from zero at the 99% level of confidence. 

Sources: CoreLogic; Urban Institute; Authors’ calculations. 
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	Existing literature on whether property buyers and investors have accordingly priced natural perils into the prices they paid remains rather mixed. One important challenge in empirically capturing the capitalization of a peril is the ability to isolat...
	PropSP  is the property sales price;
	PropLand  is the property’s land area in acres;
	PropAge  is the apartment’s age in years;
	PropBltRatio is the ratio of the apartment’s number of units to its land area;
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	HurricaneWind is the average annual damage ratio between the repair and total replacement cost of the building caused by hurricane winds;
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	HighRiskEQ is a binary variable that equals one for areas subject to high average annual damage ratios from earthquakes;
	D20## is a set of binary time variables that equal one if the apartment sold in a particular year with years ranging from 2005 to 2022;
	HighRiskHxD20## is an interaction variable that multiplies HighRiskH and D20##;
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	HighRiskHxDPeriod####-#### is an interaction variable that multiplies HighRiskH and DPeriod####-####; and
	HighRiskEQxDPeriod####-#### is an interaction variable that multiplies HighRiskEQ and DPeriod####-####.
	Exhibit 11 displays the DiD estimation results for the first of two Los Angeles models; Model 1 employed calendar years for the binary time variables.
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